21,195 research outputs found

    Network Utility Maximization under Maximum Delay Constraints and Throughput Requirements

    Full text link
    We consider the problem of maximizing aggregate user utilities over a multi-hop network, subject to link capacity constraints, maximum end-to-end delay constraints, and user throughput requirements. A user's utility is a concave function of the achieved throughput or the experienced maximum delay. The problem is important for supporting real-time multimedia traffic, and is uniquely challenging due to the need of simultaneously considering maximum delay constraints and throughput requirements. We first show that it is NP-complete either (i) to construct a feasible solution strictly meeting all constraints, or (ii) to obtain an optimal solution after we relax maximum delay constraints or throughput requirements up to constant ratios. We then develop a polynomial-time approximation algorithm named PASS. The design of PASS leverages a novel understanding between non-convex maximum-delay-aware problems and their convex average-delay-aware counterparts, which can be of independent interest and suggest a new avenue for solving maximum-delay-aware network optimization problems. Under realistic conditions, PASS achieves constant or problem-dependent approximation ratios, at the cost of violating maximum delay constraints or throughput requirements by up to constant or problem-dependent ratios. PASS is practically useful since the conditions for PASS are satisfied in many popular application scenarios. We empirically evaluate PASS using extensive simulations of supporting video-conferencing traffic across Amazon EC2 datacenters. Compared to existing algorithms and a conceivable baseline, PASS obtains up to 100%100\% improvement of utilities, by meeting the throughput requirements but relaxing the maximum delay constraints that are acceptable for practical video conferencing applications

    Maximizing Welfare in Social Networks under a Utility Driven Influence Diffusion Model

    Full text link
    Motivated by applications such as viral marketing, the problem of influence maximization (IM) has been extensively studied in the literature. The goal is to select a small number of users to adopt an item such that it results in a large cascade of adoptions by others. Existing works have three key limitations. (1) They do not account for economic considerations of a user in buying/adopting items. (2) Most studies on multiple items focus on competition, with complementary items receiving limited attention. (3) For the network owner, maximizing social welfare is important to ensure customer loyalty, which is not addressed in prior work in the IM literature. In this paper, we address all three limitations and propose a novel model called UIC that combines utility-driven item adoption with influence propagation over networks. Focusing on the mutually complementary setting, we formulate the problem of social welfare maximization in this novel setting. We show that while the objective function is neither submodular nor supermodular, surprisingly a simple greedy allocation algorithm achieves a factor of (1−1/e−ϵ)(1-1/e-\epsilon) of the optimum expected social welfare. We develop \textsf{bundleGRD}, a scalable version of this approximation algorithm, and demonstrate, with comprehensive experiments on real and synthetic datasets, that it significantly outperforms all baselines.Comment: 33 page

    The Price of Information in Combinatorial Optimization

    Full text link
    Consider a network design application where we wish to lay down a minimum-cost spanning tree in a given graph; however, we only have stochastic information about the edge costs. To learn the precise cost of any edge, we have to conduct a study that incurs a price. Our goal is to find a spanning tree while minimizing the disutility, which is the sum of the tree cost and the total price that we spend on the studies. In a different application, each edge gives a stochastic reward value. Our goal is to find a spanning tree while maximizing the utility, which is the tree reward minus the prices that we pay. Situations such as the above two often arise in practice where we wish to find a good solution to an optimization problem, but we start with only some partial knowledge about the parameters of the problem. The missing information can be found only after paying a probing price, which we call the price of information. What strategy should we adopt to optimize our expected utility/disutility? A classical example of the above setting is Weitzman's "Pandora's box" problem where we are given probability distributions on values of nn independent random variables. The goal is to choose a single variable with a large value, but we can find the actual outcomes only after paying a price. Our work is a generalization of this model to other combinatorial optimization problems such as matching, set cover, facility location, and prize-collecting Steiner tree. We give a technique that reduces such problems to their non-price counterparts, and use it to design exact/approximation algorithms to optimize our utility/disutility. Our techniques extend to situations where there are additional constraints on what parameters can be probed or when we can simultaneously probe a subset of the parameters.Comment: SODA 201

    On the Hardness of Signaling

    Full text link
    There has been a recent surge of interest in the role of information in strategic interactions. Much of this work seeks to understand how the realized equilibrium of a game is influenced by uncertainty in the environment and the information available to players in the game. Lurking beneath this literature is a fundamental, yet largely unexplored, algorithmic question: how should a "market maker" who is privy to additional information, and equipped with a specified objective, inform the players in the game? This is an informational analogue of the mechanism design question, and views the information structure of a game as a mathematical object to be designed, rather than an exogenous variable. We initiate a complexity-theoretic examination of the design of optimal information structures in general Bayesian games, a task often referred to as signaling. We focus on one of the simplest instantiations of the signaling question: Bayesian zero-sum games, and a principal who must choose an information structure maximizing the equilibrium payoff of one of the players. In this setting, we show that optimal signaling is computationally intractable, and in some cases hard to approximate, assuming that it is hard to recover a planted clique from an Erdos-Renyi random graph. This is despite the fact that equilibria in these games are computable in polynomial time, and therefore suggests that the hardness of optimal signaling is a distinct phenomenon from the hardness of equilibrium computation. Necessitated by the non-local nature of information structures, en-route to our results we prove an "amplification lemma" for the planted clique problem which may be of independent interest
    • …
    corecore