531 research outputs found

    A review of Monte Carlo simulations of polymers with PERM

    Full text link
    In this review, we describe applications of the pruned-enriched Rosenbluth method (PERM), a sequential Monte Carlo algorithm with resampling, to various problems in polymer physics. PERM produces samples according to any given prescribed weight distribution, by growing configurations step by step with controlled bias, and correcting "bad" configurations by "population control". The latter is implemented, in contrast to other population based algorithms like e.g. genetic algorithms, by depth-first recursion which avoids storing all members of the population at the same time in computer memory. The problems we discuss all concern single polymers (with one exception), but under various conditions: Homopolymers in good solvents and at the Θ\Theta point, semi-stiff polymers, polymers in confining geometries, stretched polymers undergoing a forced globule-linear transition, star polymers, bottle brushes, lattice animals as a model for randomly branched polymers, DNA melting, and finally -- as the only system at low temperatures, lattice heteropolymers as simple models for protein folding. PERM is for some of these problems the method of choice, but it can also fail. We discuss how to recognize when a result is reliable, and we discuss also some types of bias that can be crucial in guiding the growth into the right directions.Comment: 29 pages, 26 figures, to be published in J. Stat. Phys. (2011

    A graph-spectral approach to shape-from-shading

    Get PDF
    In this paper, we explore how graph-spectral methods can be used to develop a new shape-from-shading algorithm. We characterize the field of surface normals using a weight matrix whose elements are computed from the sectional curvature between different image locations and penalize large changes in surface normal direction. Modeling the blocks of the weight matrix as distinct surface patches, we use a graph seriation method to find a surface integration path that maximizes the sum of curvature-dependent weights and that can be used for the purposes of height reconstruction. To smooth the reconstructed surface, we fit quadrics to the height data for each patch. The smoothed surface normal directions are updated ensuring compliance with Lambert's law. The processes of height recovery and surface normal adjustment are interleaved and iterated until a stable surface is obtained. We provide results on synthetic and real-world imagery

    Search-based 3D Planning and Trajectory Optimization for Safe Micro Aerial Vehicle Flight Under Sensor Visibility Constraints

    Full text link
    Safe navigation of Micro Aerial Vehicles (MAVs) requires not only obstacle-free flight paths according to a static environment map, but also the perception of and reaction to previously unknown and dynamic objects. This implies that the onboard sensors cover the current flight direction. Due to the limited payload of MAVs, full sensor coverage of the environment has to be traded off with flight time. Thus, often only a part of the environment is covered. We present a combined allocentric complete planning and trajectory optimization approach taking these sensor visibility constraints into account. The optimized trajectories yield flight paths within the apex angle of a Velodyne Puck Lite 3D laser scanner enabling low-level collision avoidance to perceive obstacles in the flight direction. Furthermore, the optimized trajectories take the flight dynamics into account and contain the velocities and accelerations along the path. We evaluate our approach with a DJI Matrice 600 MAV and in simulation employing hardware-in-the-loop.Comment: In Proceedings of IEEE International Conference on Robotics and Automation (ICRA), Montreal, Canada, May 201

    On the Approximability of the Traveling Salesman Problem with Line Neighborhoods

    Get PDF
    We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the problem in Rd\mathbb{R}^d, with d3d\ge 3, are NP\mathrm{NP}-hardness and an O(log3n)O(\log^3 n)-approximation algorithm which is based on a reduction to the group Steiner tree problem. We show that TSP with lines in Rd\mathbb{R}^d is APX-hard for any d3d\ge 3. More generally, this implies that TSP with kk-dimensional flats does not admit a PTAS for any 1kd21\le k \leq d-2 unless P=NP\mathrm{P}=\mathrm{NP}, which gives a complete classification of the approximability of these problems, as there are known PTASes for k=0k=0 (i.e., points) and k=d1k=d-1 (hyperplanes). We are able to give a stronger inapproximability factor for d=O(logn)d=O(\log n) by showing that TSP with lines does not admit a (2ϵ)(2-\epsilon)-approximation in dd dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an O(log2n)O(\log^2 n)-approximation algorithm for the problem, albeit with a running time of nO(loglogn)n^{O(\log\log n)}

    On the Approximability of the Traveling Salesman Problem with Line Neighborhoods

    Get PDF
    We study the variant of the Euclidean Traveling Salesman problem where instead of a set of points, we are given a set of lines as input, and the goal is to find the shortest tour that visits each line. The best known upper and lower bounds for the problem in Rd\mathbb{R}^d, with d3d\ge 3, are NP\mathrm{NP}-hardness and an O(log3n)O(\log^3 n)-approximation algorithm which is based on a reduction to the group Steiner tree problem. We show that TSP with lines in Rd\mathbb{R}^d is APX-hard for any d3d\ge 3. More generally, this implies that TSP with kk-dimensional flats does not admit a PTAS for any 1kd21\le k \leq d-2 unless P=NP\mathrm{P}=\mathrm{NP}, which gives a complete classification of the approximability of these problems, as there are known PTASes for k=0k=0 (i.e., points) and k=d1k=d-1 (hyperplanes). We are able to give a stronger inapproximability factor for d=O(logn)d=O(\log n) by showing that TSP with lines does not admit a (2ϵ)(2-\epsilon)-approximation in dd dimensions under the unique games conjecture. On the positive side, we leverage recent results on restricted variants of the group Steiner tree problem in order to give an O(log2n)O(\log^2 n)-approximation algorithm for the problem, albeit with a running time of nO(loglogn)n^{O(\log\log n)}

    Second-order cone programming formulations for a class of problems in structural optimization

    No full text
    This paper provides efficient and easy to implement formulations for two problems in structural optimization as second-order cone programming (SOCP) problems based on the minimum compliance method and derived using the principle of complementary energy. In truss optimization both single and multiple loads (where we optimize the worst-case compliance) are considered. By using a heuristic which is based on the SOCP duality we can consider a simple ground structure and add only the members which improve the compliance of the structure. It is also shown that thickness optimization is a problem similar to truss optimization. Examples are given to illustrate the method developed in this pape

    3D Trajectory Design for UAV-Assisted Oblique Image Acquisition

    Full text link
    In this correspondence, we consider a new unmanned aerial vehicle (UAV)-assisted oblique image acquisition system where a UAV is dispatched to take images of multiple ground targets (GTs). To study the three-dimensional (3D) UAV trajectory design for image acquisition, we first propose a novel UAV-assisted oblique photography model, which characterizes the image resolution with respect to the UAV's 3D image-taking location. Then, we formulate a 3D UAV trajectory optimization problem to minimize the UAV's traveling distance subject to the image resolution constraints. The formulated problem is shown to be equivalent to a modified 3D traveling salesman problem with neighbourhoods, which is NP-hard in general. To tackle this difficult problem, we propose an iterative algorithm to obtain a high-quality suboptimal solution efficiently, by alternately optimizing the UAV's 3D image-taking waypoints and its visiting order for the GTs. Numerical results show that the proposed algorithm significantly reduces the UAV's traveling distance as compared to various benchmark schemes, while meeting the image resolution requirement

    Creating large-scale city models from 3D-point clouds: a robust approach with hybrid representation

    Get PDF
    International audienceWe present a novel and robust method for modeling cities from 3D-point data. Our algorithm pro- vides a more complete description than existing ap- proaches by reconstructing simultaneously buildings, trees and topologically complex grounds. A major con- tribution of our work is the original way of model- ing buildings which guarantees a high generalization level while having semantized and compact represen- tations. Geometric 3D-primitives such as planes, cylin- ders, spheres or cones describe regular roof sections, and are combined with mesh-patches that represent irregu- lar roof components. The various urban components in- teract through a non-convex energy minimization prob- lem in which they are propagated under arrangement constraints over a planimetric map. Our approach is ex- perimentally validated on complex buildings and large urban scenes of millions of points, and is compared to state-of-the-art methods

    Search for the lepton-family-number nonconserving decay \mu -> e + \gamma

    Full text link
    The MEGA experiment, which searched for the muon- and electron-number violating decay \mu -> e + \gamma, is described. The spectrometer system, the calibrations, the data taking procedures, the data analysis, and the sensitivity of the experiment are discussed. The most stringent upper limit on the branching ratio of \mu -> e + \gamma) < 1.2 x 10^{-11} was obtained

    Videoscapes: Exploring Unstructured Video Collections

    No full text
    corecore