509 research outputs found

    An Approximation Algorithm for Distance-Constrained Vehicle Routing on Trees

    Get PDF
    In the Distance-constrained Vehicle Routing Problem (DVRP), we are given a graph with integer edge weights, a depot, a set of nn terminals, and a distance constraint DD. The goal is to find a minimum number of tours starting and ending at the depot such that those tours together cover all the terminals and the length of each tour is at most DD. The DVRP on trees is of independent interest, because it is equivalent to the virtual machine packing problem on trees studied by Sindelar et al. [SPAA'11]. We design a simple and natural approximation algorithm for the tree DVRP, parameterized by ε>0\varepsilon >0. We show that its approximation ratio is α+ε\alpha + \varepsilon, where α≈1.691\alpha \approx 1.691, and in addition, that our analysis is essentially tight. The running time is polynomial in nn and DD. The approximation ratio improves on the ratio of 2 due to Nagarajan and Ravi [Networks'12]. The main novelty of this paper lies in the analysis of the algorithm. It relies on a reduction from the tree DVRP to the bounded space online bin packing problem via a new notion of reduced length

    The School Bus Problem on Trees

    Get PDF
    The School Bus Problem is an NP-hard vehicle routing problem in which the goal is to route buses that transport children to a school such that for each child, the distance travelled on the bus does not exceed the shortest distance from the child's home to the school by more than a given regret threshold. Subject to this constraint and bus capacity limit, the goal is to minimize the number of buses required. In this paper, we give a polynomial time 4-approximation algorithm when the children and school are located at vertices of a fixed tree. As a byproduct of our analysis, we show that the integrality gap of the natural set-cover formulation for this problem is also bounded by 4. We also present a constant factor approximation for the variant where we have a fixed number of buses to use, and the goal is to minimize the maximum regret

    Approximation algorithms for regret minimization in vehicle routing problems

    Get PDF
    In this thesis, we present new approximation algorithms as well as hardness of approximation results for NP-hard vehicle routing problems related to public transportation. We consider two different problem classes that also occur frequently in areas such as logistics, robotics, or distribution systems. For the first problem class, the goal is to visit as many locations in a network as possible subject to timing or cost constraints. For the second problem class, a given set of locations is to be visited using a minimum-cost set of routes under some constraints. Due to the relevance of both problem classes for public transportation, a secondary objective must be taken into account beyond a low operation cost: namely, it is crucial to design routes that optimize customer satisfaction in order to encourage customers to use the service. Our measure of choice is the regret of a customer, that is the time comparison of the chosen route with the shortest path to a destination. From the first problem class, we investigate variants and extensions of the Orienteering problem that asks to find a short walk maximizing the profit obtained from visiting distinct locations. We give approximation algorithms for variants in which the walk has to respect constraints on the regret of the visited vertices. Additionally, we describe a framework to extend approximation algorithms for Orienteering problems to consider also a second budget constraint, namely node demands, that have to be satisfied in order to collect the profit. We obtain polynomial time approximation schemes for the Capacitated Orienteering problem on trees and Euclidean metrics. Furthermore, we study variants of the School Bus problem (SBP). In SBP, a given set of locations is to be connected to a destination node with both low operation cost and a low maximum regret. We note that the Orienteering problem can be seen as the pricing problem for SBP and it often appears as subroutine in algorithms for SBP. For tree-shaped networks, we describe algorithms with a small constant approximation factor and complement them by showing hardness of approximation results. We give an overview of the known results in arbitrary networks and we prove that a general variant cannot be approximated unless P = NP. Finally, we describe an integer programming approach to solve School Bus problems in practice and present an improved bus schedule for a private school in the lake Geneva region

    The School Bus Problem on Trees

    Get PDF
    The School Bus Problem is an NP-hard vehicle routing problem in which the goal is to route buses that transport children to a school such that for each child, the distance travelled on the bus does not exceed the shortest distance from the child's home to the school by more than a given regret threshold. Subject to this constraint and bus capacity limit, the goal is to minimize the number of buses required. In this paper, we give a polynomial time 4-approximation algorithm when the children and school are located at vertices of a fixed tree. As a byproduct of our analysis, we show that the integrality gap of the natural set-cover formulation for this problem is also bounded by 4. We also present a constant factor approximation for the variant where we have a fixed number of buses to use, and the goal is to minimize the maximum regre

    Approximation Algorithms for Capacitated k-Travelling Repairmen Problems

    Get PDF
    We study variants of the capacitated vehicle routing problem. In the multiple depot capacitated k-travelling repairmen problem (MD-CkTRP), we have a collection of clients to be served by one vehicle in a fleet of k identical vehicles based at given depots. Each client has a given demand that must be satisfied, and each vehicle can carry a total of at most Q demand before it must resupply at its original depot. We wish to route the vehicles in a way that obeys the constraints while minimizing the average time (latency) required to serve a client. This generalizes the Multi-depot k-Travelling Repairman Problem (MD-kTRP) [Chekuri and Kumar, IEEE-FOCS, 2003; Post and Swamy, ACM-SIAM SODA, 2015] to the capacitated vehicle setting, and while it has been previously studied [Lysgaard and Wohlk, EJOR, 2014; Rivera et al, Comput Optim Appl, 2015], no approximation algorithm with a proven ratio is known. We give a 42.49-approximation to this general problem, and refine this constant to 25.49 when clients have unit demands. As far as we are aware, these are the first constant-factor approximations for capacitated vehicle routing problems with a latency objective. We achieve these results by developing a framework allowing us to solve a wider range of latency problems, and crafting various orienteering-style oracles for use in this framework. We also show a simple LP rounding algorithm has a better approximation ratio for the maximum coverage problem with groups (MCG), first studied by Chekuri and Kumar [APPROX, 2004], and use it as a subroutine in our framework. Our approximation ratio for MD-CkTRP when restricted to uncapacitated setting matches the best known bound for it [Post and Swamy, ACM-SIAM SODA, 2015]. With our framework, any improvements to our oracles or our MCG approximation will result in improved approximations to the corresponding k-TRP problem

    Constant-Factor Approximation to Deadline TSP and Related Problems in (Almost) Quasi-Polytime

    Get PDF
    We investigate a genre of vehicle-routing problems (VRPs), that we call max-reward VRPs, wherein nodes located in a metric space have associated rewards that depend on their visiting times, and we seek a path that earns maximum reward. A prominent problem in this genre is deadline TSP, where nodes have deadlines and we seek a path that visits all nodes by their deadlines and earns maximum reward. Our main result is a constant-factor approximation for deadline TSP running in time O(n^O(log(n?))) in metric spaces with integer distances at most ?. This is the first improvement over the approximation factor of O(log n) due to Bansal et al. [N. Bansal et al., 2004] in over 15 years (but is achieved in super-polynomial time). Our result provides the first concrete indication that log n is unlikely to be a real inapproximability barrier for deadline TSP, and raises the exciting possibility that deadline TSP might admit a polytime constant-factor approximation. At a high level, we obtain our result by carefully guessing an appropriate sequence of O(log (n?)) nodes appearing on the optimal path, and finding suitable paths between any two consecutive guessed nodes. We argue that the problem of finding a path between two consecutive guessed nodes can be relaxed to an instance of a special case of deadline TSP called point-to-point (P2P) orienteering. Any approximation algorithm for P2P orienteering can then be utilized in conjunction with either a greedy approach, or an LP-rounding approach, to find a good set of paths overall between every pair of guessed nodes. While concatenating these paths does not immediately yield a feasible solution, we argue that it can be covered by a constant number of feasible solutions. Overall our result therefore provides a novel reduction showing that any ?-approximation for P2P orienteering can be leveraged to obtain an O(?)-approximation for deadline TSP in O(n^O(log n?)) time. Our results extend to yield the same guarantees (in approximation ratio and running time) for a substantial generalization of deadline TSP, where the reward obtained by a client is given by an arbitrary non-increasing function (specified by a value oracle) of its visiting time. Finally, we discuss applications of our results to variants of deadline TSP, including settings where both end-nodes are specified, nodes have release dates, and orienteering with time windows
    • …
    corecore