2,234 research outputs found

    Geometry Meets Vectors: Approximation Algorithms for Multidimensional Packing

    Get PDF
    We study the generalized multidimensional bin packing problem (GVBP) that generalizes both geometric packing and vector packing. Here, we are given nn rectangular items where the ithi^{\textrm{th}} item has width w(i)w(i), height h(i)h(i), and dd nonnegative weights v1(i),v2(i),,vd(i)v_1(i), v_2(i), \ldots, v_{d}(i). Our goal is to get an axis-parallel non-overlapping packing of the items into square bins so that for all j[d]j \in [d], the sum of the jthj^{\textrm{th}} weight of items in each bin is at most 1. This is a natural problem arising in logistics, resource allocation, and scheduling. Despite being well studied in practice, surprisingly, approximation algorithms for this problem have rarely been explored. We first obtain two simple algorithms for GVBP having asymptotic approximation ratios 6(d+1)6(d+1) and 3(1+ln(d+1)+ε)3(1 + \ln(d+1) + \varepsilon). We then extend the Round-and-Approx (R&A) framework [Bansal-Khan, SODA'14] to wider classes of algorithms, and show how it can be adapted to GVBP. Using more sophisticated techniques, we obtain better approximation algorithms for GVBP, and we get further improvement by combining them with the R&A framework. This gives us an asymptotic approximation ratio of 2(1+ln((d+4)/2))+ε2(1+\ln((d+4)/2))+\varepsilon for GVBP, which improves to 2.919+ε2.919+\varepsilon for the special case of d=1d=1. We obtain further improvement when the items are allowed to be rotated. We also present algorithms for a generalization of GVBP where the items are high dimensional cuboids

    Optimal online bounded space multidimensional packing

    Get PDF
    We solve an open problem in the literature by providing an online algorithm for multidimensional bin packing that uses only bounded space. We show that it is optimal among bounded space algorithms for any dimension d>1d>1. Its asymptotic performance ratio is (Piinfty)d(Pi_{infty})^d, where Piinftyapprox1.691Pi_{infty}approx1.691 is the asymptotic performance ratio of the one-dimensional algorithm harm. A modified version of this algorithm for the case where all items are hypercubes is also shown to be optimal. Its asymptotic performance ratio is sublinear in dd. Additionally, for the special case of packing squares in two-dimensional bins, we present a new unbounded space online algorithm with asymptotic performance ratio of at most 2.2712.271. We also present an approximation algorithm for the offline problem with approximation ratio of 16/1116/11. This improves upon all earlier approximation algorithms for this problem, including the algorithm from Caprara, Packing 2-dimensional bins in harmony, Proc. 43rd FOCS, 2002

    Vector Bin Packing with Multiple-Choice

    Full text link
    We consider a variant of bin packing called multiple-choice vector bin packing. In this problem we are given a set of items, where each item can be selected in one of several DD-dimensional incarnations. We are also given TT bin types, each with its own cost and DD-dimensional size. Our goal is to pack the items in a set of bins of minimum overall cost. The problem is motivated by scheduling in networks with guaranteed quality of service (QoS), but due to its general formulation it has many other applications as well. We present an approximation algorithm that is guaranteed to produce a solution whose cost is about lnD\ln D times the optimum. For the running time to be polynomial we require D=O(1)D=O(1) and T=O(logn)T=O(\log n). This extends previous results for vector bin packing, in which each item has a single incarnation and there is only one bin type. To obtain our result we also present a PTAS for the multiple-choice version of multidimensional knapsack, where we are given only one bin and the goal is to pack a maximum weight set of (incarnations of) items in that bin

    Improved approximation bounds for Vector Bin Packing

    Full text link
    In this paper we propose an improved approximation scheme for the Vector Bin Packing problem (VBP), based on the combination of (near-)optimal solution of the Linear Programming (LP) relaxation and a greedy (modified first-fit) heuristic. The Vector Bin Packing problem of higher dimension (d \geq 2) is not known to have asymptotic polynomial-time approximation schemes (unless P = NP). Our algorithm improves over the previously-known guarantee of (ln d + 1 + epsilon) by Bansal et al. [1] for higher dimensions (d > 2). We provide a {\theta}(1) approximation scheme for certain set of inputs for any dimension d. More precisely, we provide a 2-OPT algorithm, a result which is irrespective of the number of dimensions d.Comment: 15 pages, 3 algorithm
    corecore