28 research outputs found

    Approximation algorithms for Vietoris-Rips and ÄŒech filtrations

    Get PDF
    Persistent Homology is a tool to analyze and visualize the shape of data from a topological viewpoint. It computes persistence, which summarizes the evolution of topological and geometric information about metric spaces over multiple scales of distances. While computing persistence is quite efficient for low-dimensional topological features, it becomes overwhelmingly expensive for medium to high-dimensional features. In this thesis, we attack this computational problem from several different angles. We present efficient techniques to approximate the persistence of metric spaces. Three of our methods are tailored towards general point clouds in Euclidean spaces. We make use of high dimensional lattice geometry to reduce the cost of the approximations. In particular, we discover several properties of the Permutahedral lattice, whose Voronoi cell is well-known for its combinatorial properties. The last method is suitable for point clouds with low intrinsic dimension, where we exploit the structural properties of the point set to tame the complexity. In some cases, we achieve a reduction in size complexity by trading off the quality of the approximation. Two of our methods work particularly well in conjunction with dimension-reduction techniques: we arrive at the first approximation schemes whose complexities are only polynomial in the size of the point cloud, and independent of the ambient dimension. On the other hand, we provide a lower bound result: we construct a point cloud that requires super-polynomial complexity for a high-quality approximation of the persistence. Together with our approximation schemes, we show that polynomial complexity is achievable for rough approximations, but impossible for sufficiently fine approximations. For some metric spaces, the intrinsic dimension is low in small neighborhoods of the input points, but much higher for large scales of distances. We develop a concept of local intrinsic dimension to capture this property. We also present several applications of this concept, including an approximation method for persistence. This thesis is written in English.Persistent Homology ist eine Methode zur Analyse und Veranschaulichung von Daten aus topologischer Sicht. Sie berechnet eine topologische Zusammenfassung eines metrischen Raumes, die Persistence genannt wird, indem die topologischen Eigenschaften des Raumes über verschiedene Skalen von Abständen analysiert werden. Die Berechnung von Persistence ist für niederdimensionale topologische Eigenschaften effizient. Leider ist die Berechung für mittlere bis hohe Dimensionen sehr teuer. In dieser Dissertation greifen wir dieses Problem aus vielen verschiedenen Winkeln an. Wir stellen effiziente Techniken vor, um die Persistence für metrische Räume zu approximieren. Drei unserer Methoden eignen sich für Punktwolken im euklidischen Raum. Wir verwenden hochdimensionale Gittergeometrie, um die Kosten unserer Approximationen zu reduzieren. Insbesondere entdecken wir mehrere Eigenschaften des Permutahedral Gitters, dessen Voronoi-Zelle für ihre kombinatorischen Eigenschaften bekannt ist. Die vierte Methode eignet sich für Punktwolken mit geringer intrinsischer Dimension: wir verwenden die strukturellen Eigenschaften, um die Komplexität zu reduzieren. Für einige Methoden zeigen wir einen Trade-off zwischen Komplexität und Approximationsqualität auf. Zwei unserer Methoden funktionieren gut mit Dimensionsreduktionstechniken: wir präsentieren die erste Methode mit polynomieller Komplexität unabhängig von der Dimension. Wir zeigen auch eine untere Schranke. Wir konstruieren eine Punktwolke, für die die Berechnung der Persistence nicht in Polynomzeit möglich ist. Die bedeutet, dass in Polynomzeit nur eine grobe Approximation berechnet werden kann. Für gewisse metrische Räume ist die intrinsiche Dimension gering bei kleinen Skalen aber hoch bei großen Skalen. Wir führen das Konzept lokale intrinsische Dimension ein, um diesen Umstand zu fassen, und zeigen, dass es für eine gute Approximation von Persistenz benutzt werden kann. Diese Dissertation ist in englischer Sprache verfasst

    Approximating Persistent Homology in Euclidean Space Through Collapses

    Full text link
    The \v{C}ech complex is one of the most widely used tools in applied algebraic topology. Unfortunately, due to the inclusive nature of the \v{C}ech filtration, the number of simplices grows exponentially in the number of input points. A practical consequence is that computations may have to terminate at smaller scales than what the application calls for. In this paper we propose two methods to approximate the \v{C}ech persistence module. Both are constructed on the level of spaces, i.e. as sequences of simplicial complexes induced by nerves. We also show how the bottleneck distance between such persistence modules can be understood by how tightly they are sandwiched on the level of spaces. In turn, this implies the correctness of our approximation methods. Finally, we implement our methods and apply them to some example point clouds in Euclidean space

    Sparse Higher Order ?ech Filtrations

    Get PDF
    For a finite set of balls of radius r, the k-fold cover is the space covered by at least k balls. Fixing the ball centers and varying the radius, we obtain a nested sequence of spaces that is called the k-fold filtration of the centers. For k = 1, the construction is the union-of-balls filtration that is popular in topological data analysis. For larger k, it yields a cleaner shape reconstruction in the presence of outliers. We contribute a sparsification algorithm to approximate the topology of the k-fold filtration. Our method is a combination and adaptation of several techniques from the well-studied case k = 1, resulting in a sparsification of linear size that can be computed in expected near-linear time with respect to the number of input points

    Dimensionality reduction for k-distance applied to persistent homology

    Get PDF
    Given a set P of n points and a constant k, we are interested in computing the persistent homology of the Čech filtration of P for the k-distance, and investigate the effectiveness of dimensionality reduction for this problem, answering an open question of Sheehy [Proc. SoCG, 2014]. We show that any linear transformation that preserves pairwise distances up to a (1±ε) multiplicative factor, must preserve the persistent homology of the Čech filtration up to a factor of (1-ε)^{-1}. Our results also show that the Vietoris-Rips and Delaunay filtrations for the k-distance, as well as the Čech filtration for the approximate k-distance of Buchet et al. are preserved up to a (1±ε) factor. We also prove extensions of our main theorem, for point sets (i) lying in a region of bounded Gaussian width or (ii) on a low-dimensional manifold, obtaining the target dimension bounds of Lotz [Proc. Roy. Soc. , 2019] and Clarkson [Proc. SoCG, 2008 ] respectively

    Intrinsic persistent homology via density-based metric learning

    Get PDF
    We address the problem of estimating intrinsic distances in a manifold from a finite sample. We prove that the metric space defined by the sample endowed with a computable metric known as sample Fermat distance converges a.s. in the sense of Gromov–Hausdorff. The limiting object is the manifold itself endowed with the population Fermat distance, an intrinsic metric that accounts for both the geometry of the manifold and the density that produces the sample. This result is applied to obtain intrinsic persistence diagrams, which are less sensitive to the particular embedding of the manifold in the Euclidean space. We show that this approach is robust to outliers and deduce a method for pattern recognition in signals, with applications in real data.Fil: Borghini, Eugenio. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Fernández, Ximena Laura. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Groisman, Pablo Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Investigaciones Matemáticas "Luis A. Santaló". Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Investigaciones Matemáticas "Luis A. Santaló"; ArgentinaFil: Mindlin, Bernardo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Física de Buenos Aires. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Física de Buenos Aires; Argentin

    Improved Approximate Rips Filtrations with Shifted Integer Lattices

    Get PDF
    Rips complexes are important structures for analyzing topological features of metric spaces. Unfortunately, generating these complexes constitutes an expensive task because of a combinatorial explosion in the complex size. For n points in R^d, we present a scheme to construct a 4.24-approximation of the multi-scale filtration of the Rips complex in the L-infinity metric, which extends to a O(d^{0.25})-approximation of the Rips filtration for the Euclidean case. The k-skeleton of the resulting approximation has a total size of n2^{O(d log k)}. The scheme is based on the integer lattice and on the barycentric subdivision of the d-cube

    The Morse theory of \v{C}ech and Delaunay complexes

    Full text link
    Given a finite set of points in Rn\mathbb R^n and a radius parameter, we study the \v{C}ech, Delaunay-\v{C}ech, Delaunay (or Alpha), and Wrap complexes in the light of generalized discrete Morse theory. Establishing the \v{C}ech and Delaunay complexes as sublevel sets of generalized discrete Morse functions, we prove that the four complexes are simple-homotopy equivalent by a sequence of simplicial collapses, which are explicitly described by a single discrete gradient field.Comment: 21 pages, 2 figures, improved expositio

    Visualizing Sparse Filtrations

    Get PDF
    Over the last few years, there have been several approaches to building sparser complexes that still give good approximations to the persistent homology. In this video, we have illustrated a geometric perspective on sparse filtrations that leads to simpler proofs, more general theorems, and a more visual explanation. We hope that as these techniques become easier to understand, they will also become easier to use

    Barcodes of Towers and a Streaming Algorithm for Persistent Homology

    Get PDF
    A tower is a sequence of simplicial complexes connected by simplicial maps. We show how to compute a filtration, a sequence of nested simplicial complexes, with the same persistent barcode as the tower. Our approach is based on the coning strategy by Dey et al. (SoCG 2014). We show that a variant of this approach yields a filtration that is asymptotically only marginally larger than the tower and can be efficiently computed by a streaming algorithm, both in theory and in practice. Furthermore, we show that our approach can be combined with a streaming algorithm to compute the barcode of the tower via matrix reduction. The space complexity of the algorithm does not depend on the length of the tower, but the maximal size of any subcomplex within the tower. Experimental evaluations show that our approach can efficiently handle towers with billions of complexes

    Simplicial Data Analysis: theory, practice, and algorithms

    Get PDF
    Simplicial complexes store in discrete form key information on a topological space, and have been used in mathematics to introduce combinatorial and discrete tools in geometry and topology. They represent a topological space as a collection of ‘simple elements’ (such as vertices, edges, triangles, tetrahedra, and more general simplices) that are glued to each other in a structured manner. In the last 40 years, they have been a basic tool in computer visualization for storing and classifying different shapes of 3d images, then in the early 2000s these techniques were success- fully applied to more general data, not necessarily sampled from a metric space. The use of techniques borrowed from algebraic topology has been very successfull in analysing data from various fields: genomics, sensor analysis, brain connectomics, fMRI data, trade net- works, and new fields of application are being tested every day. Regrettably, topological data analysis has been used mainly as a qualitative method, the problem being the lack of proper tools to perform effective statistical analysis. Coming from well established techniques in random graph theory, the first models for random simplicial complexes have been introduced in recent years, none of which though can be used effectively in a quantitative analysis of data. We introduce a model that can be successfully used as a null model for simplicial complexes as it fixes the size distribution of facets. Another challenge is to successfully identify a simplicial complex which can correctly encode the topological space from which the initial data set is sampled. The most common solution is to build nesting simplicial complexes, and study the evolution of their features. A recent study uncovered that the problem can reside in making wrong assumption on the space of data. We propose a categorical reasoning which enlightens the cause leading to these misconceptions. We introduce a new category for weighted graphs and study its relation to other common categories when the weights are chosen in a poset. The construction of the appropriate simplicial complex is not the only obstacle one faces when applying topological methods to real data. Available algorithms for homological features extraction have a memory and time complexity which scales exponentially on the number of simplices, making these techniques not suitable for the analysis of ‘big data’. We propose a quantum algorithm which is able to track in logarithmic time the evolution of a quantum version of well known homological features along a filtration of simplicial complexes
    corecore