174 research outputs found

    Containership Load Planning with Crane Operations

    Get PDF
    Since the start of the containerization revolution in 1950's, not only the TEU capacity of the vessels has been increasing constantly, but also the number of fully cellular container ships has expanded substantially. Because of the tense competition among ports in recent years, improving the operational efficiency of ports has become an important issue in containership operations. Arrangement of containers both within the container terminal and on the containership play an important role in determining the berthing time. The berthing time of a containership is mainly composed of the unloading and loading time of containers. Containers in a containership are stored in stacks, making a container directly accessible only if it is on the top of one stack. The task of determining a good container arrangement to minimize the number of re-handlings while maintaining the ship's stability over several ports is called stowage planning, which is an everyday problem solved by ship planners. The horizontal distribution of the containers over the bays affects crane utilization and overall ship berthing time. In order to increase the terminal productivity and reduce the turnaround time, the stowage planning must conform to the berth design. Given the configuration of berths and cranes at each visiting port, the stowage planning must take into account the utilization of quay cranes as well as the reduction of unnecessary shifts to minimize the total time at all ports over the voyage. This dissertation introduces an optimization model to solve the stowage planning problem with crane utilization considerations. The optimization model covers a wide range of operational and structural constraints for containership load planning. In order to solve real-size problems, a meta-heuristic approach based on genetic algorithms is designed and implemented which embeds a crane split approximation routine. The genetic encoding is ultra-compact and represents grouping, sorting and assignment strategies that might be applied to form the stowage pattern. The evaluation procedure accounts for technical specification of the cranes as well as the crane split. Numerical results show that timely solution for ultra large size containerships can be obtained under different scenarios

    Dynamic Quay Crane Allocation

    Get PDF
    We introduce simple rules for quay cranes to handle containers along a berth where vessels arrive continuously in time. We first analyze a model where workload is continuous. Our analysis shows that if the system is configured properly, it will always converge to a state with the maximum possible throughput regardless of external disruptions or changes in workload. Numerical simulations based on a discrete workload model suggest that, by following the same rules, the system can still converge to state with throughput that is very close to its upper bound

    Adaptive autotuning mathematical approaches for integrated optimization of automated container terminal

    Get PDF
    With the development of automated container terminals (ACTs), reducing the loading and unloading time of operation and improving the working efficiency and service level have become the key point. Taking into account the actual operation mode of loading and unloading in ACTs, a mixed integer programming model is adopted in this study to minimize the loading and unloading time of ships, which can optimize the integrated scheduling of the gantry cranes (QCs), automated guided vehicles (AGVs), and automated rail-mounted gantries (ARMGs) in automated terminals. Various basic metaheuristic and improved hybrid algorithms were developed to optimize the model, proving the effectiveness of the model to obtain an optimized scheduling scheme by numerical experiments and comparing the different performances of algorithms. The results show that the hybrid GA-PSO algorithm with adaptive autotuning approaches by fuzzy control is superior to other algorithms in terms of solution time and quality, which can effectively solve the problem of integrated scheduling of automated container terminals to improve efficiency.info:eu-repo/semantics/publishedVersio

    Models and Solutions Algorithms for Improving Operations in Marine Transportation

    Get PDF
    International seaborne trade rose significantly during the past decades. This created the need to improve efficiency of liner shipping services and marine container terminal operations to meet the growing demand. The objective of this dissertation is to develop simulation and mathematical models that may enhance operations of liner shipping services and marine container terminals, taking into account the main goals of liner shipping companies (e.g., reduce fuel consumption and vessel emissions, ensure on-time arrival to each port of call, provide vessel scheduling strategies that capture sailing time variability, consider variable port handling times, increase profit, etc.) and terminal operators (e.g., decrease turnaround time of vessels, improve terminal productivity without significant capital investments, reduce possible vessel delays and associated penalties, ensure fast recovery in case of natural and man-made disasters, make the terminal competitive, maximize revenues, etc.). This dissertation proposes and models two alternatives for improving operations of marine container terminals: 1) a floaterm concept and 2) a new contractual agreement between terminal operators. The main difference between floaterm and conventional marine container terminals is that in the former case some of import and/or transshipment containers are handled by off-shore quay cranes and placed on container barges, which are further towed by push boats to assigned feeder vessels or floating yard. According to the new collaborative agreement, a dedicated marine container terminal operator can divert some of its vessels for the service at a multi-user terminal during specific time windows. Another part of dissertation focuses on enhancing operations of liner shipping services by introducing the following: 1) a new collaborative agreement between a liner shipping company and terminal operators and 2) a new framework for modeling uncertainty in liner shipping. A new collaborative mechanism assumes that each terminal operator is able to offer a set of handling rates to a liner shipping company, which may result in a substantial total route service cost reduction. The suggested framework for modeling uncertainty is expected to assist liner shipping companies in designing robust vessel schedules

    Sequence-Based Simulation-Optimization Framework With Application to Port Operations at Multimodal Container Terminals

    Get PDF
    It is evident in previous works that operations research and mathematical algorithms can provide optimal or near-optimal solutions, whereas simulation models can aid in predicting and studying the behavior of systems over time and monitor performance under stochastic and uncertain circumstances. Given the intensive computational effort that simulation optimization methods impose, especially for large and complex systems like container terminals, a favorable approach is to reduce the search space to decrease the amount of computation. A maritime port can consist of multiple terminals with specific functionalities and specialized equipment. A container terminal is one of several facilities in a port that involves numerous resources and entities. It is also where containers are stored and transported, making the container terminal a complex system. Problems such as berth allocation, quay and yard crane scheduling and assignment, storage yard layout configuration, container re-handling, customs and security, and risk analysis become particularly challenging. Discrete-event simulation (DES) models are typically developed for complex and stochastic systems such as container terminals to study their behavior under different scenarios and circumstances. Simulation-optimization methods have emerged as an approach to find optimal values for input variables that maximize certain output metric(s) of the simulation. Various traditional and nontraditional approaches of simulation-optimization continue to be used to aid in decision making. In this dissertation, a novel framework for simulation-optimization is developed, implemented, and validated to study the influence of using a sequence (ordering) of decision variables (resource levels) for simulation-based optimization in resource allocation problems. This approach aims to reduce the computational effort of optimizing large simulations by breaking the simulation-optimization problem into stages. Since container terminals are complex stochastic systems consisting of different areas with detailed and critical functions that may affect the output, a platform that accurately simulates such a system can be of significant analytical benefit. To implement and validate the developed framework, a large-scale complex container terminal discrete-event simulation model was developed and validated based on a real system and then used as a testing platform for various hypothesized algorithms studied in this work

    Simulation analysis for integrated container terminal activities

    Get PDF
    Analisi simualtiva delle attività  logistiche di un container terminal con utilizzo del software Arenaope

    Models and new methods for the quayside operations in port container terminals.

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Exact and Heuristic Methods for Integrated Container Terminal Problems

    Get PDF
    corecore