4,490 research outputs found

    Characteristic of partition-circuit matroid through approximation number

    Full text link
    Rough set theory is a useful tool to deal with uncertain, granular and incomplete knowledge in information systems. And it is based on equivalence relations or partitions. Matroid theory is a structure that generalizes linear independence in vector spaces, and has a variety of applications in many fields. In this paper, we propose a new type of matroids, namely, partition-circuit matroids, which are induced by partitions. Firstly, a partition satisfies circuit axioms in matroid theory, then it can induce a matroid which is called a partition-circuit matroid. A partition and an equivalence relation on the same universe are one-to-one corresponding, then some characteristics of partition-circuit matroids are studied through rough sets. Secondly, similar to the upper approximation number which is proposed by Wang and Zhu, we define the lower approximation number. Some characteristics of partition-circuit matroids and the dual matroids of them are investigated through the lower approximation number and the upper approximation number.Comment: 12 page

    Rough sets and matroidal contraction

    Full text link
    Rough sets are efficient for data pre-processing in data mining. As a generalization of the linear independence in vector spaces, matroids provide well-established platforms for greedy algorithms. In this paper, we apply rough sets to matroids and study the contraction of the dual of the corresponding matroid. First, for an equivalence relation on a universe, a matroidal structure of the rough set is established through the lower approximation operator. Second, the dual of the matroid and its properties such as independent sets, bases and rank function are investigated. Finally, the relationships between the contraction of the dual matroid to the complement of a single point set and the contraction of the dual matroid to the complement of the equivalence class of this point are studied.Comment: 11 page

    Approximations from Anywhere and General Rough Sets

    Full text link
    Not all approximations arise from information systems. The problem of fitting approximations, subjected to some rules (and related data), to information systems in a rough scheme of things is known as the \emph{inverse problem}. The inverse problem is more general than the duality (or abstract representation) problems and was introduced by the present author in her earlier papers. From the practical perspective, a few (as opposed to one) theoretical frameworks may be suitable for formulating the problem itself. \emph{Granular operator spaces} have been recently introduced and investigated by the present author in her recent work in the context of antichain based and dialectical semantics for general rough sets. The nature of the inverse problem is examined from number-theoretic and combinatorial perspectives in a higher order variant of granular operator spaces and some necessary conditions are proved. The results and the novel approach would be useful in a number of unsupervised and semi supervised learning contexts and algorithms.Comment: 20 Pages. Scheduled to appear in IJCRS'2017 LNCS Proceedings, Springe
    • …
    corecore