98 research outputs found

    Global Cardinality Constraints Make Approximating Some Max-2-CSPs Harder

    Get PDF
    Assuming the Unique Games Conjecture, we show that existing approximation algorithms for some Boolean Max-2-CSPs with cardinality constraints are optimal. In particular, we prove that Max-Cut with cardinality constraints is UG-hard to approximate within ~~0.858, and that Max-2-Sat with cardinality constraints is UG-hard to approximate within ~~0.929. In both cases, the previous best hardness results were the same as the hardness of the corresponding unconstrained Max-2-CSP (~~0.878 for Max-Cut, and ~~0.940 for Max-2-Sat). The hardness for Max-2-Sat applies to monotone Max-2-Sat instances, meaning that we also obtain tight inapproximability for the Max-k-Vertex-Cover problem

    Sticky Brownian Rounding and its Applications to Constraint Satisfaction Problems

    Get PDF
    Semidefinite programming is a powerful tool in the design and analysis of approximation algorithms for combinatorial optimization problems. In particular, the random hyperplane rounding method of Goemans and Williamson has been extensively studied for more than two decades, resulting in various extensions to the original technique and beautiful algorithms for a wide range of applications. Despite the fact that this approach yields tight approximation guarantees for some problems, e.g., Max-Cut, for many others, e.g., Max-SAT and Max-DiCut, the tight approximation ratio is still unknown. One of the main reasons for this is the fact that very few techniques for rounding semidefinite relaxations are known. In this work, we present a new general and simple method for rounding semi-definite programs, based on Brownian motion. Our approach is inspired by recent results in algorithmic discrepancy theory. We develop and present tools for analyzing our new rounding algorithms, utilizing mathematical machinery from the theory of Brownian motion, complex analysis, and partial differential equations. Focusing on constraint satisfaction problems, we apply our method to several classical problems, including Max-Cut, Max-2SAT, and MaxDiCut, and derive new algorithms that are competitive with the best known results. To illustrate the versatility and general applicability of our approach, we give new approximation algorithms for the Max-Cut problem with side constraints that crucially utilizes measure concentration results for the Sticky Brownian Motion, a feature missing from hyperplane rounding and its generalization

    Subsampled Power Iteration: a Unified Algorithm for Block Models and Planted CSP's

    Get PDF
    We present an algorithm for recovering planted solutions in two well-known models, the stochastic block model and planted constraint satisfaction problems, via a common generalization in terms of random bipartite graphs. Our algorithm matches up to a constant factor the best-known bounds for the number of edges (or constraints) needed for perfect recovery and its running time is linear in the number of edges used. The time complexity is significantly better than both spectral and SDP-based approaches. The main contribution of the algorithm is in the case of unequal sizes in the bipartition (corresponding to odd uniformity in the CSP). Here our algorithm succeeds at a significantly lower density than the spectral approaches, surpassing a barrier based on the spectral norm of a random matrix. Other significant features of the algorithm and analysis include (i) the critical use of power iteration with subsampling, which might be of independent interest; its analysis requires keeping track of multiple norms of an evolving solution (ii) it can be implemented statistically, i.e., with very limited access to the input distribution (iii) the algorithm is extremely simple to implement and runs in linear time, and thus is practical even for very large instances

    On the complexity of computing the kk-restricted edge-connectivity of a graph

    Full text link
    The \emph{kk-restricted edge-connectivity} of a graph GG, denoted by λk(G)\lambda_k(G), is defined as the minimum size of an edge set whose removal leaves exactly two connected components each containing at least kk vertices. This graph invariant, which can be seen as a generalization of a minimum edge-cut, has been extensively studied from a combinatorial point of view. However, very little is known about the complexity of computing λk(G)\lambda_k(G). Very recently, in the parameterized complexity community the notion of \emph{good edge separation} of a graph has been defined, which happens to be essentially the same as the kk-restricted edge-connectivity. Motivated by the relevance of this invariant from both combinatorial and algorithmic points of view, in this article we initiate a systematic study of its computational complexity, with special emphasis on its parameterized complexity for several choices of the parameters. We provide a number of NP-hardness and W[1]-hardness results, as well as FPT-algorithms.Comment: 16 pages, 4 figure

    Improved Inapproximability Results for Maximum k-Colorable Subgraph

    Full text link
    We study the maximization version of the fundamental graph coloring problem. Here the goal is to color the vertices of a k-colorable graph with k colors so that a maximum fraction of edges are properly colored (i.e. their endpoints receive different colors). A random k-coloring properly colors an expected fraction 1-1/k of edges. We prove that given a graph promised to be k-colorable, it is NP-hard to find a k-coloring that properly colors more than a fraction ~1-O(1/k} of edges. Previously, only a hardness factor of 1-O(1/k^2) was known. Our result pins down the correct asymptotic dependence of the approximation factor on k. Along the way, we prove that approximating the Maximum 3-colorable subgraph problem within a factor greater than 32/33 is NP-hard. Using semidefinite programming, it is known that one can do better than a random coloring and properly color a fraction 1-1/k +2 ln k/k^2 of edges in polynomial time. We show that, assuming the 2-to-1 conjecture, it is hard to properly color (using k colors) more than a fraction 1-1/k + O(ln k/ k^2) of edges of a k-colorable graph.Comment: 16 pages, 2 figure

    On the Approximability of Digraph Ordering

    Full text link
    Given an n-vertex digraph D = (V, A) the Max-k-Ordering problem is to compute a labeling :V[k]\ell : V \to [k] maximizing the number of forward edges, i.e. edges (u,v) such that \ell(u) < \ell(v). For different values of k, this reduces to Maximum Acyclic Subgraph (k=n), and Max-Dicut (k=2). This work studies the approximability of Max-k-Ordering and its generalizations, motivated by their applications to job scheduling with soft precedence constraints. We give an LP rounding based 2-approximation algorithm for Max-k-Ordering for any k={2,..., n}, improving on the known 2k/(k-1)-approximation obtained via random assignment. The tightness of this rounding is shown by proving that for any k={2,..., n} and constant ε>0\varepsilon > 0, Max-k-Ordering has an LP integrality gap of 2 - ε\varepsilon for nΩ(1/loglogk)n^{\Omega\left(1/\log\log k\right)} rounds of the Sherali-Adams hierarchy. A further generalization of Max-k-Ordering is the restricted maximum acyclic subgraph problem or RMAS, where each vertex v has a finite set of allowable labels SvZ+S_v \subseteq \mathbb{Z}^+. We prove an LP rounding based 42/(2+1)2.3444\sqrt{2}/(\sqrt{2}+1) \approx 2.344 approximation for it, improving on the 222.8282\sqrt{2} \approx 2.828 approximation recently given by Grandoni et al. (Information Processing Letters, Vol. 115(2), Pages 182-185, 2015). In fact, our approximation algorithm also works for a general version where the objective counts the edges which go forward by at least a positive offset specific to each edge. The minimization formulation of digraph ordering is DAG edge deletion or DED(k), which requires deleting the minimum number of edges from an n-vertex directed acyclic graph (DAG) to remove all paths of length k. We show that both, the LP relaxation and a local ratio approach for DED(k) yield k-approximation for any k[n]k\in [n].Comment: 21 pages, Conference version to appear in ESA 201

    A Survey on Approximation in Parameterized Complexity: Hardness and Algorithms

    Get PDF
    Parameterization and approximation are two popular ways of coping with NP-hard problems. More recently, the two have also been combined to derive many interesting results. We survey developments in the area both from the algorithmic and hardness perspectives, with emphasis on new techniques and potential future research directions
    corecore