937 research outputs found

    Randomized Algorithms for the Loop Cutset Problem

    Full text link
    We show how to find a minimum weight loop cutset in a Bayesian network with high probability. Finding such a loop cutset is the first step in the method of conditioning for inference. Our randomized algorithm for finding a loop cutset outputs a minimum loop cutset after O(c 6^k kn) steps with probability at least 1 - (1 - 1/(6^k))^c6^k, where c > 1 is a constant specified by the user, k is the minimal size of a minimum weight loop cutset, and n is the number of vertices. We also show empirically that a variant of this algorithm often finds a loop cutset that is closer to the minimum weight loop cutset than the ones found by the best deterministic algorithms known

    Limits of Preprocessing

    Full text link
    We present a first theoretical analysis of the power of polynomial-time preprocessing for important combinatorial problems from various areas in AI. We consider problems from Constraint Satisfaction, Global Constraints, Satisfiability, Nonmonotonic and Bayesian Reasoning. We show that, subject to a complexity theoretic assumption, none of the considered problems can be reduced by polynomial-time preprocessing to a problem kernel whose size is polynomial in a structural problem parameter of the input, such as induced width or backdoor size. Our results provide a firm theoretical boundary for the performance of polynomial-time preprocessing algorithms for the considered problems.Comment: This is a slightly longer version of a paper that appeared in the proceedings of AAAI 201

    Guarantees and Limits of Preprocessing in Constraint Satisfaction and Reasoning

    Full text link
    We present a first theoretical analysis of the power of polynomial-time preprocessing for important combinatorial problems from various areas in AI. We consider problems from Constraint Satisfaction, Global Constraints, Satisfiability, Nonmonotonic and Bayesian Reasoning under structural restrictions. All these problems involve two tasks: (i) identifying the structure in the input as required by the restriction, and (ii) using the identified structure to solve the reasoning task efficiently. We show that for most of the considered problems, task (i) admits a polynomial-time preprocessing to a problem kernel whose size is polynomial in a structural problem parameter of the input, in contrast to task (ii) which does not admit such a reduction to a problem kernel of polynomial size, subject to a complexity theoretic assumption. As a notable exception we show that the consistency problem for the AtMost-NValue constraint admits a polynomial kernel consisting of a quadratic number of variables and domain values. Our results provide a firm worst-case guarantees and theoretical boundaries for the performance of polynomial-time preprocessing algorithms for the considered problems.Comment: arXiv admin note: substantial text overlap with arXiv:1104.2541, arXiv:1104.556

    The Price of Information in Combinatorial Optimization

    Full text link
    Consider a network design application where we wish to lay down a minimum-cost spanning tree in a given graph; however, we only have stochastic information about the edge costs. To learn the precise cost of any edge, we have to conduct a study that incurs a price. Our goal is to find a spanning tree while minimizing the disutility, which is the sum of the tree cost and the total price that we spend on the studies. In a different application, each edge gives a stochastic reward value. Our goal is to find a spanning tree while maximizing the utility, which is the tree reward minus the prices that we pay. Situations such as the above two often arise in practice where we wish to find a good solution to an optimization problem, but we start with only some partial knowledge about the parameters of the problem. The missing information can be found only after paying a probing price, which we call the price of information. What strategy should we adopt to optimize our expected utility/disutility? A classical example of the above setting is Weitzman's "Pandora's box" problem where we are given probability distributions on values of nn independent random variables. The goal is to choose a single variable with a large value, but we can find the actual outcomes only after paying a price. Our work is a generalization of this model to other combinatorial optimization problems such as matching, set cover, facility location, and prize-collecting Steiner tree. We give a technique that reduces such problems to their non-price counterparts, and use it to design exact/approximation algorithms to optimize our utility/disutility. Our techniques extend to situations where there are additional constraints on what parameters can be probed or when we can simultaneously probe a subset of the parameters.Comment: SODA 201

    Backdoors to Acyclic SAT

    Full text link
    Backdoor sets, a notion introduced by Williams et al. in 2003, are certain sets of key variables of a CNF formula F that make it easy to solve the formula; by assigning truth values to the variables in a backdoor set, the formula gets reduced to one or several polynomial-time solvable formulas. More specifically, a weak backdoor set of F is a set X of variables such that there exits a truth assignment t to X that reduces F to a satisfiable formula F[t] that belongs to a polynomial-time decidable base class C. A strong backdoor set is a set X of variables such that for all assignments t to X, the reduced formula F[t] belongs to C. We study the problem of finding backdoor sets of size at most k with respect to the base class of CNF formulas with acyclic incidence graphs, taking k as the parameter. We show that 1. the detection of weak backdoor sets is W[2]-hard in general but fixed-parameter tractable for r-CNF formulas, for any fixed r>=3, and 2. the detection of strong backdoor sets is fixed-parameter approximable. Result 1 is the the first positive one for a base class that does not have a characterization with obstructions of bounded size. Result 2 is the first positive one for a base class for which strong backdoor sets are more powerful than deletion backdoor sets. Not only SAT, but also #SAT can be solved in polynomial time for CNF formulas with acyclic incidence graphs. Hence Result 2 establishes a new structural parameter that makes #SAT fixed-parameter tractable and that is incomparable with known parameters such as treewidth and clique-width. We obtain the algorithms by a combination of an algorithmic version of the Erd\"os-P\'osa Theorem, Courcelle's model checking for monadic second order logic, and new combinatorial results on how disjoint cycles can interact with the backdoor set
    • …
    corecore