853 research outputs found

    Some complexity and approximation results for coupled-tasks scheduling problem according to topology

    Get PDF
    We consider the makespan minimization coupled-tasks problem in presence of compatibility constraints with a specified topology. In particular, we focus on stretched coupled-tasks, i.e. coupled-tasks having the same sub-tasks execution time and idle time duration. We study several problems in framework of classic complexity and approximation for which the compatibility graph is bipartite (star, chain,. . .). In such a context, we design some efficient polynomial-time approximation algorithms for an intractable scheduling problem according to some parameters

    Stochastic Budget Optimization in Internet Advertising

    Full text link
    Internet advertising is a sophisticated game in which the many advertisers "play" to optimize their return on investment. There are many "targets" for the advertisements, and each "target" has a collection of games with a potentially different set of players involved. In this paper, we study the problem of how advertisers allocate their budget across these "targets". In particular, we focus on formulating their best response strategy as an optimization problem. Advertisers have a set of keywords ("targets") and some stochastic information about the future, namely a probability distribution over scenarios of cost vs click combinations. This summarizes the potential states of the world assuming that the strategies of other players are fixed. Then, the best response can be abstracted as stochastic budget optimization problems to figure out how to spread a given budget across these keywords to maximize the expected number of clicks. We present the first known non-trivial poly-logarithmic approximation for these problems as well as the first known hardness results of getting better than logarithmic approximation ratios in the various parameters involved. We also identify several special cases of these problems of practical interest, such as with fixed number of scenarios or with polynomial-sized parameters related to cost, which are solvable either in polynomial time or with improved approximation ratios. Stochastic budget optimization with scenarios has sophisticated technical structure. Our approximation and hardness results come from relating these problems to a special type of (0/1, bipartite) quadratic programs inherent in them. Our research answers some open problems raised by the authors in (Stochastic Models for Budget Optimization in Search-Based Advertising, Algorithmica, 58 (4), 1022-1044, 2010).Comment: FINAL versio

    Permissive Controller Synthesis for Probabilistic Systems

    Get PDF
    We propose novel controller synthesis techniques for probabilistic systems modelled using stochastic two-player games: one player acts as a controller, the second represents its environment, and probability is used to capture uncertainty arising due to, for example, unreliable sensors or faulty system components. Our aim is to generate robust controllers that are resilient to unexpected system changes at runtime, and flexible enough to be adapted if additional constraints need to be imposed. We develop a permissive controller synthesis framework, which generates multi-strategies for the controller, offering a choice of control actions to take at each time step. We formalise the notion of permissivity using penalties, which are incurred each time a possible control action is disallowed by a multi-strategy. Permissive controller synthesis aims to generate a multi-strategy that minimises these penalties, whilst guaranteeing the satisfaction of a specified system property. We establish several key results about the optimality of multi-strategies and the complexity of synthesising them. Then, we develop methods to perform permissive controller synthesis using mixed integer linear programming and illustrate their effectiveness on a selection of case studies
    • …
    corecore