220 research outputs found

    Approximation Algorithms for the Directed k-Tour and k-Stroll Problems

    Full text link
    We consider two natural generalizations of the Asymmetric Traveling Salesman problem: the k-Stroll and the k-Tour problems. The input to the k-Stroll problem is a directed n-vertex graph with nonnegative edge lengths, an integer k, and two special vertices s and t. The goal is to find a minimum-length s-t walk, containing at least k distinct vertices. The k-Tour problem can be viewed as a special case of k-Stroll, where s = t. That is, the walk is required to be a tour, containing some pre-specified vertex s. When k = n, the k-Stroll problem becomes equivalent to Asymmetric Traveling Salesman Path, and k-Tour to Asymmetric Traveling Salesman. Our main result is a polylogarithmic approximation algorithm for the k-Stroll problem. Prior to our work, only bicriteria (O(log 2 k), 3)-approximation algorithms have been known, producing walks whose length is bounded by 3OPT, while the number of vertices visited is Ω(k / log 2 k). We also show a simple O(log 2 n / log log n)-approximation algorithm for the k-Tour problem. The best previously known approximation algorithms achieved min(O(log 3 k), O(log 2 n · log k / log log n))-approximation in polynomial time, and O(log 2 k)-approximation in quasipolynomial time.

    Relations between automata and the simple k-path problem

    Full text link
    Let GG be a directed graph on nn vertices. Given an integer k<=nk<=n, the SIMPLE kk-PATH problem asks whether there exists a simple kk-path in GG. In case GG is weighted, the MIN-WT SIMPLE kk-PATH problem asks for a simple kk-path in GG of minimal weight. The fastest currently known deterministic algorithm for MIN-WT SIMPLE kk-PATH by Fomin, Lokshtanov and Saurabh runs in time O(2.851knO(1)logW)O(2.851^k\cdot n^{O(1)}\cdot \log W) for graphs with integer weights in the range [W,W][-W,W]. This is also the best currently known deterministic algorithm for SIMPLE k-PATH- where the running time is the same without the logW\log W factor. We define Lk(n)[n]kL_k(n)\subseteq [n]^k to be the set of words of length kk whose symbols are all distinct. We show that an explicit construction of a non-deterministic automaton (NFA) of size f(k)nO(1)f(k)\cdot n^{O(1)} for Lk(n)L_k(n) implies an algorithm of running time O(f(k)nO(1)logW)O(f(k)\cdot n^{O(1)}\cdot \log W) for MIN-WT SIMPLE kk-PATH when the weights are non-negative or the constructed NFA is acyclic as a directed graph. We show that the algorithm of Kneis et al. and its derandomization by Chen et al. for SIMPLE kk-PATH can be used to construct an acylic NFA for Lk(n)L_k(n) of size O(4k+o(k))O^*(4^{k+o(k)}). We show, on the other hand, that any NFA for Lk(n)L_k(n) must be size at least 2k2^k. We thus propose closing this gap and determining the smallest NFA for Lk(n)L_k(n) as an interesting open problem that might lead to faster algorithms for MIN-WT SIMPLE kk-PATH. We use a relation between SIMPLE kk-PATH and non-deterministic xor automata (NXA) to give another direction for a deterministic algorithm with running time O(2k)O^*(2^k) for SIMPLE kk-PATH

    Towards the solution of variants of Vehicle Routing Problem

    Get PDF
    Some of the problems that are used extensively in -real life are NP complete problems. There is no any algorithm which can give the optimal solution to NP complete problems in the polynomial time in the worst case. So researchers are applying their best efforts to design the approximation algorithms for these NP complete problems. Approximation algorithm gives the solution of a particular problem, which is close to the optimal solution of that problem. In this paper, a study on variants of vehicle routing problem is being done along with the difference in the approximation ratios of different approximation algorithms as being given by researchers and it is found that Researchers are continuously applying their best efforts to design new approximation algorithms which have better approximation ratio as compared to the previously existing algorithms

    Towards the solution of variants of Vehicle Routing Problem

    Get PDF
    Some of the problems that are used extensively in -real life are NP complete problems. There is no any algorithm which can give the optimal solution to NP complete problems in the polynomial time in the worst case. So researchers are applying their best efforts to design the approximation algorithms for these NP complete problems. Approximation algorithm gives the solution of a particular problem, which is close to the optimal solution of that problem. In this paper, a study on variants of vehicle routing problem is being done along with the difference in the approximation ratios of different approximation algorithms as being given by researchers and it is found that Researchers are continuously applying their best efforts to design new approximation algorithms which have better approximation ratio as compared to the previously existing algorithms

    The traveling repairman problem

    Get PDF
    Diese Magisterarbeit gibt einen Überblick über das Traveling Repairman Problem (TRP), das eine Spezialform des Problems des Handlungsreisenden (Traveling Salesman Problem – TSP) darstellt. Beide Modelle werden benutzt, um die Tour eines Handlungsreisenden zu planen, der in einer vorgegebenen Zeitspanne eine bestimmte Anzahl von Kunden besuchen soll. Während das TSP sich darauf konzentriert, die Länge der Tour zu minimieren, versucht das TRP, die Summe der Wartezeiten der Kunden so gering wie möglich zu halten. Der Hauptteil der Arbeit beschäftigt sich mit der Definition und den Varianten des TRP und beschreibt mögliche Modelle und Verfahren, mit deren Hilfe diese zu lösen sind. Dabei werden zuerst die Problemstellungen definiert und dann die mathematischen Formulierungen bzw. die Algorithmen dargestellt. Zu Beginn der Arbeit werden das TSP und das TRP näher definiert und kurz anhand eines Beispiels illustriert (in Kapitel 2). Danach werden das allgemeine TRP und einige Lösungsverfahren dazu näher erläutert (in Kapitel 3). Im Hauptteil werden zuerst einige Variationen des TRP mit einem einzelnen Repairman und Algorithmen zur Lösung dieser Modelle beschrieben (in Kapitel 4). Dann werden das TRP mit mehreren Repairmen sowie einige Spezialformen hierzu erläutert (in Kapitel 5). Zusätzlich werden in dieser Arbeit Anwendungsmöglichkeiten beschrieben, von denen zwei genauer untersucht werden (in Kapitel 6). Schließlich werden noch einige Basisbegriffe und Lösungsmethoden erläutert (in Kapitel 7)

    Out of equilibrium dynamics of classical and quantum complex systems

    Get PDF
    Equilibrium is a rather ideal situation, the exception rather than the rule in Nature. Whenever the external or internal parameters of a physical system are varied its subsequent relaxation to equilibrium may be either impossible or take very long times. From the point of view of fundamental physics no generic principle such as the ones of thermodynamics allows us to fully understand their behaviour. The alternative is to treat each case separately. It is illusionary to attempt to give, at least at this stage, a complete description of all non-equilibrium situations. Still, one can try to identify and characterise some concrete but still general features of a class of out of equilibrium problems - yet to be identified - and search for a unified description of these. In this report I briefly describe the behaviour and theory of a set of non-equilibrium systems and I try to highlight common features and some general laws that have emerged in recent years.Comment: 36 pages, to be published in Compte Rendus de l'Academie de Sciences, T. Giamarchi e

    Approximation algorithms for regret minimization in vehicle routing problems

    Get PDF
    In this thesis, we present new approximation algorithms as well as hardness of approximation results for NP-hard vehicle routing problems related to public transportation. We consider two different problem classes that also occur frequently in areas such as logistics, robotics, or distribution systems. For the first problem class, the goal is to visit as many locations in a network as possible subject to timing or cost constraints. For the second problem class, a given set of locations is to be visited using a minimum-cost set of routes under some constraints. Due to the relevance of both problem classes for public transportation, a secondary objective must be taken into account beyond a low operation cost: namely, it is crucial to design routes that optimize customer satisfaction in order to encourage customers to use the service. Our measure of choice is the regret of a customer, that is the time comparison of the chosen route with the shortest path to a destination. From the first problem class, we investigate variants and extensions of the Orienteering problem that asks to find a short walk maximizing the profit obtained from visiting distinct locations. We give approximation algorithms for variants in which the walk has to respect constraints on the regret of the visited vertices. Additionally, we describe a framework to extend approximation algorithms for Orienteering problems to consider also a second budget constraint, namely node demands, that have to be satisfied in order to collect the profit. We obtain polynomial time approximation schemes for the Capacitated Orienteering problem on trees and Euclidean metrics. Furthermore, we study variants of the School Bus problem (SBP). In SBP, a given set of locations is to be connected to a destination node with both low operation cost and a low maximum regret. We note that the Orienteering problem can be seen as the pricing problem for SBP and it often appears as subroutine in algorithms for SBP. For tree-shaped networks, we describe algorithms with a small constant approximation factor and complement them by showing hardness of approximation results. We give an overview of the known results in arbitrary networks and we prove that a general variant cannot be approximated unless P = NP. Finally, we describe an integer programming approach to solve School Bus problems in practice and present an improved bus schedule for a private school in the lake Geneva region
    corecore