539 research outputs found

    Solving the Bottleneck Traveling Salesman Problem Using the Lin-Kernighan-Helsgaun Algorithm

    Get PDF
    granted for educational or research use on condition that this copy-right notice is included in any copy

    Advanced analysis of branch and bound algorithms

    Get PDF
    Als de code van een cijferslot zoek is, kan het alleen geopend worden door alle cijfercomĀ­binaties langs te gaan. In het slechtste geval is de laatste combinatie de juiste. Echter, als de code uit tien cijfers bestaat, moeten tien miljard mogelijkheden bekeken worden. De zogenaamde 'NP-lastige' problemen in het proefschrift van Marcel Turkensteen zijn vergelijkbaar met het 'cijferslotprobleem'. Ook bij deze problemen is het aantal mogelijkheden buitensporig groot. De kunst is derhalve om de zoekruimte op een slimme manier af te tasten. Bij de Branch and Bound (BnB) methode wordt dit gedaan door de zoekruimte op te splitsen in kleinere deelgebieden. Turkensteen past de BnB methode onder andere toe bij het handelsreizigersprobleem, waarbij een kortste route door een verzameling plaatsen bepaald moet worden. Dit probleem is in algemene vorm nog steeds niet opgelost. De economische gevolgen kunnen groot zijn: zo staat nog steeds niet vast of bijvoorbeeld een routeplanner vrachtwagens optimaal laat rondrijden. De huidige BnB-methoden worden in dit proefschrift met name verbeterd door niet naar de kosten van een verbinding te kijken, maar naar de kostentoename als een verbinding niet gebruikt wordt: de boventolerantie.

    Lin-Kernighan Heuristic Adaptations for the Generalized Traveling Salesman Problem

    Get PDF
    The Lin-Kernighan heuristic is known to be one of the most successful heuristics for the Traveling Salesman Problem (TSP). It has also proven its efficiency in application to some other problems. In this paper we discuss possible adaptations of TSP heuristics for the Generalized Traveling Salesman Problem (GTSP) and focus on the case of the Lin-Kernighan algorithm. At first, we provide an easy-to-understand description of the original Lin-Kernighan heuristic. Then we propose several adaptations, both trivial and complicated. Finally, we conduct a fair competition between all the variations of the Lin-Kernighan adaptation and some other GTSP heuristics. It appears that our adaptation of the Lin-Kernighan algorithm for the GTSP reproduces the success of the original heuristic. Different variations of our adaptation outperform all other heuristics in a wide range of trade-offs between solution quality and running time, making Lin-Kernighan the state-of-the-art GTSP local search.Comment: 25 page

    Approximating the Held-Karp Bound for Metric TSP in Nearly Linear Time

    Full text link
    We give a nearly linear time randomized approximation scheme for the Held-Karp bound [Held and Karp, 1970] for metric TSP. Formally, given an undirected edge-weighted graph GG on mm edges and Ļµ>0\epsilon > 0, the algorithm outputs in O(mlogā”4n/Ļµ2)O(m \log^4n /\epsilon^2) time, with high probability, a (1+Ļµ)(1+\epsilon)-approximation to the Held-Karp bound on the metric TSP instance induced by the shortest path metric on GG. The algorithm can also be used to output a corresponding solution to the Subtour Elimination LP. We substantially improve upon the O(m2logā”2(m)/Ļµ2)O(m^2 \log^2(m)/\epsilon^2) running time achieved previously by Garg and Khandekar. The LP solution can be used to obtain a fast randomized (32+Ļµ)\big(\frac{3}{2} + \epsilon\big)-approximation for metric TSP which improves upon the running time of previous implementations of Christofides' algorithm
    • ā€¦
    corecore