112,347 research outputs found

    Connected k-Center and k-Diameter Clustering

    Get PDF
    Motivated by an application from geodesy, we introduce a novel clustering problem which is a kk-center (or k-diameter) problem with a side constraint. For the side constraint, we are given an undirected connectivity graph GG on the input points, and a clustering is now only feasible if every cluster induces a connected subgraph in GG. We call the resulting problems the connected kk-center problem and the connected kk-diameter problem. We prove several results on the complexity and approximability of these problems. Our main result is an O(log2k)O(\log^2{k})-approximation algorithm for the connected kk-center and the connected kk-diameter problem. For Euclidean metrics and metrics with constant doubling dimension, the approximation factor of this algorithm improves to O(1)O(1). We also consider the special cases that the connectivity graph is a line or a tree. For the line we give optimal polynomial-time algorithms and for the case that the connectivity graph is a tree, we either give an optimal polynomial-time algorithm or a 22-approximation algorithm for all variants of our model. We complement our upper bounds by several lower bounds

    Faster Clustering via Preprocessing

    Full text link
    We examine the efficiency of clustering a set of points, when the encompassing metric space may be preprocessed in advance. In computational problems of this genre, there is a first stage of preprocessing, whose input is a collection of points MM; the next stage receives as input a query set QMQ\subset M, and should report a clustering of QQ according to some objective, such as 1-median, in which case the answer is a point aMa\in M minimizing qQdM(a,q)\sum_{q\in Q} d_M(a,q). We design fast algorithms that approximately solve such problems under standard clustering objectives like pp-center and pp-median, when the metric MM has low doubling dimension. By leveraging the preprocessing stage, our algorithms achieve query time that is near-linear in the query size n=Qn=|Q|, and is (almost) independent of the total number of points m=Mm=|M|.Comment: 24 page

    Dynamic Approximate All-Pairs Shortest Paths: Breaking the O(mn) Barrier and Derandomization

    Full text link
    We study dynamic (1+ϵ)(1+\epsilon)-approximation algorithms for the all-pairs shortest paths problem in unweighted undirected nn-node mm-edge graphs under edge deletions. The fastest algorithm for this problem is a randomized algorithm with a total update time of O~(mn/ϵ)\tilde O(mn/\epsilon) and constant query time by Roditty and Zwick [FOCS 2004]. The fastest deterministic algorithm is from a 1981 paper by Even and Shiloach [JACM 1981]; it has a total update time of O(mn2)O(mn^2) and constant query time. We improve these results as follows: (1) We present an algorithm with a total update time of O~(n5/2/ϵ)\tilde O(n^{5/2}/\epsilon) and constant query time that has an additive error of 22 in addition to the 1+ϵ1+\epsilon multiplicative error. This beats the previous O~(mn/ϵ)\tilde O(mn/\epsilon) time when m=Ω(n3/2)m=\Omega(n^{3/2}). Note that the additive error is unavoidable since, even in the static case, an O(n3δ)O(n^{3-\delta})-time (a so-called truly subcubic) combinatorial algorithm with 1+ϵ1+\epsilon multiplicative error cannot have an additive error less than 2ϵ2-\epsilon, unless we make a major breakthrough for Boolean matrix multiplication [Dor et al. FOCS 1996] and many other long-standing problems [Vassilevska Williams and Williams FOCS 2010]. The algorithm can also be turned into a (2+ϵ)(2+\epsilon)-approximation algorithm (without an additive error) with the same time guarantees, improving the recent (3+ϵ)(3+\epsilon)-approximation algorithm with O~(n5/2+O(log(1/ϵ)/logn))\tilde O(n^{5/2+O(\sqrt{\log{(1/\epsilon)}/\log n})}) running time of Bernstein and Roditty [SODA 2011] in terms of both approximation and time guarantees. (2) We present a deterministic algorithm with a total update time of O~(mn/ϵ)\tilde O(mn/\epsilon) and a query time of O(loglogn)O(\log\log n). The algorithm has a multiplicative error of 1+ϵ1+\epsilon and gives the first improved deterministic algorithm since 1981. It also answers an open question raised by Bernstein [STOC 2013].Comment: A preliminary version was presented at the 2013 IEEE 54th Annual Symposium on Foundations of Computer Science (FOCS 2013

    Matroid and Knapsack Center Problems

    Full text link
    In the classic kk-center problem, we are given a metric graph, and the objective is to open kk nodes as centers such that the maximum distance from any vertex to its closest center is minimized. In this paper, we consider two important generalizations of kk-center, the matroid center problem and the knapsack center problem. Both problems are motivated by recent content distribution network applications. Our contributions can be summarized as follows: 1. We consider the matroid center problem in which the centers are required to form an independent set of a given matroid. We show this problem is NP-hard even on a line. We present a 3-approximation algorithm for the problem on general metrics. We also consider the outlier version of the problem where a given number of vertices can be excluded as the outliers from the solution. We present a 7-approximation for the outlier version. 2. We consider the (multi-)knapsack center problem in which the centers are required to satisfy one (or more) knapsack constraint(s). It is known that the knapsack center problem with a single knapsack constraint admits a 3-approximation. However, when there are at least two knapsack constraints, we show this problem is not approximable at all. To complement the hardness result, we present a polynomial time algorithm that gives a 3-approximate solution such that one knapsack constraint is satisfied and the others may be violated by at most a factor of 1+ϵ1+\epsilon. We also obtain a 3-approximation for the outlier version that may violate the knapsack constraint by 1+ϵ1+\epsilon.Comment: A preliminary version of this paper is accepted to IPCO 201
    corecore