155 research outputs found

    Hardness of submodular cost allocation : lattice matching and a simplex coloring conjecture

    Get PDF
    We consider the Minimum Submodular Cost Allocation (MSCA) problem. In this problem, we are given k submodular cost functions f1, ... , fk: 2V -> R+ and the goal is to partition V into k sets A1, ..., Ak so as to minimize the total cost sumi = 1,k fi(Ai). We show that MSCA is inapproximable within any multiplicative factor even in very restricted settings; prior to our work, only Set Cover hardness was known. In light of this negative result, we turn our attention to special cases of the problem. We consider the setting in which each function fi satisfies fi = gi + h, where each gi is monotone submodular and h is (possibly non-monotone) submodular. We give an O(k log |V|) approximation for this problem. We provide some evidence that a factor of k may be necessary, even in the special case of HyperLabel. In particular, we formulate a simplex-coloring conjecture that implies a Unique-Games-hardness of (k - 1 - epsilon) for k-uniform HyperLabel and label set [k]. We provide a proof of the simplex-coloring conjecture for k=3

    Hardness of Submodular Cost Allocation: Lattice Matching and a Simplex Coloring Conjecture

    Get PDF
    We consider the Minimum Submodular Cost Allocation (MSCA) problem. In this problem, we are given k submodular cost functions f_1, ... , f_k: 2^V -> R_+ and the goal is to partition V into k sets A_1, ..., A_k so as to minimize the total cost sum_{i = 1}^k f_i(A_i). We show that MSCA is inapproximable within any multiplicative factor even in very restricted settings; prior to our work, only Set Cover hardness was known. In light of this negative result, we turn our attention to special cases of the problem. We consider the setting in which each function f_i satisfies f_i = g_i + h, where each g_i is monotone submodular and h is (possibly non-monotone) submodular. We give an O(k log |V|) approximation for this problem. We provide some evidence that a factor of k may be necessary, even in the special case of HyperLabel. In particular, we formulate a simplex-coloring conjecture that implies a Unique-Games-hardness of (k - 1 - epsilon) for k-uniform HyperLabel and label set [k]. We provide a proof of the simplex-coloring conjecture for k=3

    Learning and Testing Variable Partitions

    Get PDF
    Let FF be a multivariate function from a product set Σn\Sigma^n to an Abelian group GG. A kk-partition of FF with cost δ\delta is a partition of the set of variables V\mathbf{V} into kk non-empty subsets (X1,,Xk)(\mathbf{X}_1, \dots, \mathbf{X}_k) such that F(V)F(\mathbf{V}) is δ\delta-close to F1(X1)++Fk(Xk)F_1(\mathbf{X}_1)+\dots+F_k(\mathbf{X}_k) for some F1,,FkF_1, \dots, F_k with respect to a given error metric. We study algorithms for agnostically learning kk partitions and testing kk-partitionability over various groups and error metrics given query access to FF. In particular we show that 1.1. Given a function that has a kk-partition of cost δ\delta, a partition of cost O(kn2)(δ+ϵ)\mathcal{O}(k n^2)(\delta + \epsilon) can be learned in time O~(n2poly(1/ϵ))\tilde{\mathcal{O}}(n^2 \mathrm{poly} (1/\epsilon)) for any ϵ>0\epsilon > 0. In contrast, for k=2k = 2 and n=3n = 3 learning a partition of cost δ+ϵ\delta + \epsilon is NP-hard. 2.2. When FF is real-valued and the error metric is the 2-norm, a 2-partition of cost δ2+ϵ\sqrt{\delta^2 + \epsilon} can be learned in time O~(n5/ϵ2)\tilde{\mathcal{O}}(n^5/\epsilon^2). 3.3. When FF is Zq\mathbb{Z}_q-valued and the error metric is Hamming weight, kk-partitionability is testable with one-sided error and O(kn3/ϵ)\mathcal{O}(kn^3/\epsilon) non-adaptive queries. We also show that even two-sided testers require Ω(n)\Omega(n) queries when k=2k = 2. This work was motivated by reinforcement learning control tasks in which the set of control variables can be partitioned. The partitioning reduces the task into multiple lower-dimensional ones that are relatively easier to learn. Our second algorithm empirically increases the scores attained over previous heuristic partitioning methods applied in this context.Comment: Innovations in Theoretical Computer Science (ITCS) 202

    Maximizing Symmetric Submodular Functions

    Full text link
    Symmetric submodular functions are an important family of submodular functions capturing many interesting cases including cut functions of graphs and hypergraphs. Maximization of such functions subject to various constraints receives little attention by current research, unlike similar minimization problems which have been widely studied. In this work, we identify a few submodular maximization problems for which one can get a better approximation for symmetric objectives than the state of the art approximation for general submodular functions. We first consider the problem of maximizing a non-negative symmetric submodular function f ⁣:2NR+f\colon 2^\mathcal{N} \to \mathbb{R}^+ subject to a down-monotone solvable polytope P[0,1]N\mathcal{P} \subseteq [0, 1]^\mathcal{N}. For this problem we describe an algorithm producing a fractional solution of value at least 0.432f(OPT)0.432 \cdot f(OPT), where OPTOPT is the optimal integral solution. Our second result considers the problem max{f(S):S=k}\max \{f(S) : |S| = k\} for a non-negative symmetric submodular function f ⁣:2NR+f\colon 2^\mathcal{N} \to \mathbb{R}^+. For this problem, we give an approximation ratio that depends on the value k/Nk / |\mathcal{N}| and is always at least 0.4320.432. Our method can also be applied to non-negative non-symmetric submodular functions, in which case it produces 1/eo(1)1/e - o(1) approximation, improving over the best known result for this problem. For unconstrained maximization of a non-negative symmetric submodular function we describe a deterministic linear-time 1/21/2-approximation algorithm. Finally, we give a [1(11/k)k1][1 - (1 - 1/k)^{k - 1}]-approximation algorithm for Submodular Welfare with kk players having identical non-negative submodular utility functions, and show that this is the best possible approximation ratio for the problem.Comment: 31 pages, an extended abstract appeared in ESA 201
    corecore