34,500 research outputs found

    Offline and online variants of the Traveling Salesman Problem

    Get PDF
    In this thesis, we study several well-motivated variants of the Traveling Salesman Problem (TSP). First, we consider makespan minimization for vehicle scheduling problems on trees with release and handling times. 2-approximation algorithms were known for several variants of the single vehicle problem on a path. A 3/2-approximation algorithm was known for the single vehicle problem on a path where there is a fixed starting point and the vehicle must return to the starting point upon completion. Karuno, Nagamochi and Ibaraki give a 2-approximation algorithm for the single vehicle problem on trees. We develop a Polynomial Time Approximation Scheme (PTAS) for the single vehicle scheduling problem on trees which have a constant number of leaves. This PTAS can be easily adapted to accommodate various starting/ending constraints. We then extended this to a PTAS for the multiple vehicle problem where vehicles operate in disjoint subtrees. We also present competitive online algorithms for some single vehicle scheduling problems. Secondly, we study a class of problems called the Online Packet TSP Class (OP-TSP-CLASS). It is based on the online TSP with a packet of requests known and available for scheduling at any given time. We provide a 5/3 lower bound on any online algorithm for problems in OP-TSP-CLASS. We extend this result to the related k-reordering problem for which a 3/2 lower bound was known. We develop a κ+1-competitive algorithm for problems in OP-TSP-CLASS, where a κ-approximation algorithm is known for the offline version of that problem. We use this result to develop an offline m(κ+1)-approximation algorithm for the Precedence-Constrained TSP (PCTSP) by segmenting the n requests into m packets. Its running time is mf(n/m) given a κ-approximation algorithm for the offline version whose running time is f(n)

    Approximation algorithms for stochastic scheduling on unrelated machines

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2008.Includes bibliographical references (p. 59-60).Motivated by problems in distributed computing, this thesis presents the first nontrivial polynomial time approximation algorithms for an important class of machine scheduling problems. We study the family of preemptive minimum makespan scheduling problems where jobs have stochastic processing requirements and provide the first approximation algorithms for these problems when machines have unrelated speeds. We show a series of algorithms that apply given increasingly general classes of precedence constraints on jobs. Letting n and m be, respectively, the number of jobs and machines in an instance, when jobs need an exponentially distributed amount of processing, we give: -- An O(log log min {m, n} )-approximation algorithm when jobs are independent; -- An 0 (log(n + m) log log min {m, n})-approximation algorithm when precedence constraints form disjoint chains; and, -- An O(log n log(n + m) log log min {m, n} )-approximation algorithm when precedence constraints form a directed forest. Very simple modifications allow our algorithms to apply to more general distributions, at the cost of slightly worse approximation ratios. Our O(log log n)-approximation algorithm for independent jobs holds when we allow restarting instead of preemption. Here jobs may switch machines, but lose all previous processing if they do so. We also consider problems in the framework of scheduling under uncertainty. This model considers jobs that require unit processing on machines with identical speeds. However, after processing a job to completion, a machine has an (unrelated) probability of failing and leaving the job uncompleted. This difficulty is offset by allowing multiple machines to process a job simultaneously. We prove that this model is equivalent to a slightly modified version of the family of problems described above and provide approximation algorithms for analogous problems with identical ratios.by Jacob Scott.S.M

    Optimization Models and Algorithms for Spatial Scheduling

    Get PDF
    Spatial scheduling problems involve scheduling a set of activities or jobs that each require a certain amount of physical space in order to be carried out. In these problems space is a limited resource, and the job locations, orientations, and start times must be simultaneously determined. As a result, spatial scheduling problems are a particularly difficult class of scheduling problems. These problems are commonly encountered in diverse industries including shipbuilding, aircraft assembly, and supply chain management. Despite its importance, there is a relatively scarce amount of research in the area of spatial scheduling. In this dissertation, spatial scheduling problems are studied from a mathematical and algorithmic perspective. Optimization models based on integer programming are developed for several classes of spatial scheduling problems. While the majority of these models address problems having an objective of minimizing total tardiness, the models are shown to contain a core set of constraints that are common to most spatial scheduling problems. As a result, these constraints form the basis of the models given in this dissertation and many other spatial scheduling problems with different objectives as well. The complexity of these models is shown to be at least NP-complete, and spatial scheduling problems in general are shown to be NP-hard. A lower bound for the total tardiness objective is shown, and a polynomial-time algorithm for computing this lower bound is given. The computational complexity inherent to spatial scheduling generally prevents the use of optimization models to find solutions to larger, realistic problems in a reasonable time. Accordingly, two classes of approximation algorithms were developed: greedy heuristics for finding fast, feasible solutions; and hybrid meta-heuristic algorithms to search for near-optimal solutions. A flexible hybrid algorithm framework was developed, and a number of hybrid algorithms were devised from this framework that employ local search and several varieties of simulated annealing. Extensive computational experiments showed these hybrid meta-heuristic algorithms to be effective in finding high-quality solutions over a wide variety of problems. Hybrid algorithms based on local search generally provided both the best-quality solutions and the greatest consistency

    Overcommitment in Cloud Services -- Bin packing with Chance Constraints

    Full text link
    This paper considers a traditional problem of resource allocation, scheduling jobs on machines. One such recent application is cloud computing, where jobs arrive in an online fashion with capacity requirements and need to be immediately scheduled on physical machines in data centers. It is often observed that the requested capacities are not fully utilized, hence offering an opportunity to employ an overcommitment policy, i.e., selling resources beyond capacity. Setting the right overcommitment level can induce a significant cost reduction for the cloud provider, while only inducing a very low risk of violating capacity constraints. We introduce and study a model that quantifies the value of overcommitment by modeling the problem as a bin packing with chance constraints. We then propose an alternative formulation that transforms each chance constraint into a submodular function. We show that our model captures the risk pooling effect and can guide scheduling and overcommitment decisions. We also develop a family of online algorithms that are intuitive, easy to implement and provide a constant factor guarantee from optimal. Finally, we calibrate our model using realistic workload data, and test our approach in a practical setting. Our analysis and experiments illustrate the benefit of overcommitment in cloud services, and suggest a cost reduction of 1.5% to 17% depending on the provider's risk tolerance

    Scheduling MapReduce Jobs under Multi-Round Precedences

    Full text link
    We consider non-preemptive scheduling of MapReduce jobs with multiple tasks in the practical scenario where each job requires several map-reduce rounds. We seek to minimize the average weighted completion time and consider scheduling on identical and unrelated parallel processors. For identical processors, we present LP-based O(1)-approximation algorithms. For unrelated processors, the approximation ratio naturally depends on the maximum number of rounds of any job. Since the number of rounds per job in typical MapReduce algorithms is a small constant, our scheduling algorithms achieve a small approximation ratio in practice. For the single-round case, we substantially improve on previously best known approximation guarantees for both identical and unrelated processors. Moreover, we conduct an experimental analysis and compare the performance of our algorithms against a fast heuristic and a lower bound on the optimal solution, thus demonstrating their promising practical performance

    Wireless Scheduling with Power Control

    Full text link
    We consider the scheduling of arbitrary wireless links in the physical model of interference to minimize the time for satisfying all requests. We study here the combined problem of scheduling and power control, where we seek both an assignment of power settings and a partition of the links so that each set satisfies the signal-to-interference-plus-noise (SINR) constraints. We give an algorithm that attains an approximation ratio of O(lognloglogΔ)O(\log n \cdot \log\log \Delta), where nn is the number of links and Δ\Delta is the ratio between the longest and the shortest link length. Under the natural assumption that lengths are represented in binary, this gives the first approximation ratio that is polylogarithmic in the size of the input. The algorithm has the desirable property of using an oblivious power assignment, where the power assigned to a sender depends only on the length of the link. We give evidence that this dependence on Δ\Delta is unavoidable, showing that any reasonably-behaving oblivious power assignment results in a Ω(loglogΔ)\Omega(\log\log \Delta)-approximation. These results hold also for the (weighted) capacity problem of finding a maximum (weighted) subset of links that can be scheduled in a single time slot. In addition, we obtain improved approximation for a bidirectional variant of the scheduling problem, give partial answers to questions about the utility of graphs for modeling physical interference, and generalize the setting from the standard 2-dimensional Euclidean plane to doubling metrics. Finally, we explore the utility of graph models in capturing wireless interference.Comment: Revised full versio

    Parameterized complexity of machine scheduling: 15 open problems

    Full text link
    Machine scheduling problems are a long-time key domain of algorithms and complexity research. A novel approach to machine scheduling problems are fixed-parameter algorithms. To stimulate this thriving research direction, we propose 15 open questions in this area whose resolution we expect to lead to the discovery of new approaches and techniques both in scheduling and parameterized complexity theory.Comment: Version accepted to Computers & Operations Researc

    Stochastic scheduling on unrelated machines

    Get PDF
    Two important characteristics encountered in many real-world scheduling problems are heterogeneous machines/processors and a certain degree of uncertainty about the actual sizes of jobs. The first characteristic entails machine dependent processing times of jobs and is captured by the classical unrelated machine scheduling model.The second characteristic is adequately addressed by stochastic processing times of jobs as they are studied in classical stochastic scheduling models. While there is an extensive but separate literature for the two scheduling models, we study for the first time a combined model that takes both characteristics into account simultaneously. Here, the processing time of job jj on machine ii is governed by random variable PijP_{ij}, and its actual realization becomes known only upon job completion. With wjw_j being the given weight of job jj, we study the classical objective to minimize the expected total weighted completion time E[jwjCj]E[\sum_j w_jC_j], where CjC_j is the completion time of job jj. By means of a novel time-indexed linear programming relaxation, we compute in polynomial time a scheduling policy with performance guarantee (3+Δ)/2+ϵ(3+\Delta)/2+\epsilon. Here, ϵ>0\epsilon>0 is arbitrarily small, and Δ\Delta is an upper bound on the squared coefficient of variation of the processing times. We show that the dependence of the performance guarantee on Δ\Delta is tight, as we obtain a Δ/2\Delta/2 lower bound for the type of policies that we use. When jobs also have individual release dates rijr_{ij}, our bound is (2+Δ)+ϵ(2+\Delta)+\epsilon. Via Δ=0\Delta=0, currently best known bounds for deterministic scheduling are contained as a special case
    corecore