3,377 research outputs found

    Partitioning Regular Polygons into Circular Pieces I: Convex Partitions

    Get PDF
    We explore an instance of the question of partitioning a polygon into pieces, each of which is as ``circular'' as possible, in the sense of having an aspect ratio close to 1. The aspect ratio of a polygon is the ratio of the diameters of the smallest circumscribing circle to the largest inscribed disk. The problem is rich even for partitioning regular polygons into convex pieces, the focus of this paper. We show that the optimal (most circular) partition for an equilateral triangle has an infinite number of pieces, with the lower bound approachable to any accuracy desired by a particular finite partition. For pentagons and all regular k-gons, k > 5, the unpartitioned polygon is already optimal. The square presents an interesting intermediate case. Here the one-piece partition is not optimal, but nor is the trivial lower bound approachable. We narrow the optimal ratio to an aspect-ratio gap of 0.01082 with several somewhat intricate partitions.Comment: 21 pages, 25 figure

    Fat Polygonal Partitions with Applications to Visualization and Embeddings

    Get PDF
    Let T\mathcal{T} be a rooted and weighted tree, where the weight of any node is equal to the sum of the weights of its children. The popular Treemap algorithm visualizes such a tree as a hierarchical partition of a square into rectangles, where the area of the rectangle corresponding to any node in T\mathcal{T} is equal to the weight of that node. The aspect ratio of the rectangles in such a rectangular partition necessarily depends on the weights and can become arbitrarily high. We introduce a new hierarchical partition scheme, called a polygonal partition, which uses convex polygons rather than just rectangles. We present two methods for constructing polygonal partitions, both having guarantees on the worst-case aspect ratio of the constructed polygons; in particular, both methods guarantee a bound on the aspect ratio that is independent of the weights of the nodes. We also consider rectangular partitions with slack, where the areas of the rectangles may differ slightly from the weights of the corresponding nodes. We show that this makes it possible to obtain partitions with constant aspect ratio. This result generalizes to hyper-rectangular partitions in Rd\mathbb{R}^d. We use these partitions with slack for embedding ultrametrics into dd-dimensional Euclidean space: we give a polylog(Δ)\mathop{\rm polylog}(\Delta)-approximation algorithm for embedding nn-point ultrametrics into Rd\mathbb{R}^d with minimum distortion, where Δ\Delta denotes the spread of the metric, i.e., the ratio between the largest and the smallest distance between two points. The previously best-known approximation ratio for this problem was polynomial in nn. This is the first algorithm for embedding a non-trivial family of weighted-graph metrics into a space of constant dimension that achieves polylogarithmic approximation ratio.Comment: 26 page

    Query processing of geometric objects with free form boundarie sin spatial databases

    Get PDF
    The increasing demand for the use of database systems as an integrating factor in CAD/CAM applications has necessitated the development of database systems with appropriate modelling and retrieval capabilities. One essential problem is the treatment of geometric data which has led to the development of spatial databases. Unfortunately, most proposals only deal with simple geometric objects like multidimensional points and rectangles. On the other hand, there has been a rapid development in the field of representing geometric objects with free form curves or surfaces, initiated by engineering applications such as mechanical engineering, aviation or astronautics. Therefore, we propose a concept for the realization of spatial retrieval operations on geometric objects with free form boundaries, such as B-spline or Bezier curves, which can easily be integrated in a database management system. The key concept is the encapsulation of geometric operations in a so-called query processor. First, this enables the definition of an interface allowing the integration into the data model and the definition of the query language of a database system for complex objects. Second, the approach allows the use of an arbitrary representation of the geometric objects. After a short description of the query processor, we propose some representations for free form objects determined by B-spline or Bezier curves. The goal of efficient query processing in a database environment is achieved using a combination of decomposition techniques and spatial access methods. Finally, we present some experimental results indicating that the performance of decomposition techniques is clearly superior to traditional query processing strategies for geometric objects with free form boundaries

    Approximation Schemes for Maximum Weight Independent Set of Rectangles

    Full text link
    In the Maximum Weight Independent Set of Rectangles (MWISR) problem we are given a set of n axis-parallel rectangles in the 2D-plane, and the goal is to select a maximum weight subset of pairwise non-overlapping rectangles. Due to many applications, e.g. in data mining, map labeling and admission control, the problem has received a lot of attention by various research communities. We present the first (1+epsilon)-approximation algorithm for the MWISR problem with quasi-polynomial running time 2^{poly(log n/epsilon)}. In contrast, the best known polynomial time approximation algorithms for the problem achieve superconstant approximation ratios of O(log log n) (unweighted case) and O(log n / log log n) (weighted case). Key to our results is a new geometric dynamic program which recursively subdivides the plane into polygons of bounded complexity. We provide the technical tools that are needed to analyze its performance. In particular, we present a method of partitioning the plane into small and simple areas such that the rectangles of an optimal solution are intersected in a very controlled manner. Together with a novel application of the weighted planar graph separator theorem due to Arora et al. this allows us to upper bound our approximation ratio by (1+epsilon). Our dynamic program is very general and we believe that it will be useful for other settings. In particular, we show that, when parametrized properly, it provides a polynomial time (1+epsilon)-approximation for the special case of the MWISR problem when each rectangle is relatively large in at least one dimension. Key to this analysis is a method to tile the plane in order to approximately describe the topology of these rectangles in an optimal solution. This technique might be a useful insight to design better polynomial time approximation algorithms or even a PTAS for the MWISR problem

    Reachability in Biochemical Dynamical Systems by Quantitative Discrete Approximation (extended abstract)

    Full text link
    In this paper, a novel computational technique for finite discrete approximation of continuous dynamical systems suitable for a significant class of biochemical dynamical systems is introduced. The method is parameterized in order to affect the imposed level of approximation provided that with increasing parameter value the approximation converges to the original continuous system. By employing this approximation technique, we present algorithms solving the reachability problem for biochemical dynamical systems. The presented method and algorithms are evaluated on several exemplary biological models and on a real case study.Comment: In Proceedings CompMod 2011, arXiv:1109.104

    Query processing of spatial objects: Complexity versus Redundancy

    Get PDF
    The management of complex spatial objects in applications, such as geography and cartography, imposes stringent new requirements on spatial database systems, in particular on efficient query processing. As shown before, the performance of spatial query processing can be improved by decomposing complex spatial objects into simple components. Up to now, only decomposition techniques generating a linear number of very simple components, e.g. triangles or trapezoids, have been considered. In this paper, we will investigate the natural trade-off between the complexity of the components and the redundancy, i.e. the number of components, with respect to its effect on efficient query processing. In particular, we present two new decomposition methods generating a better balance between the complexity and the number of components than previously known techniques. We compare these new decomposition methods to the traditional undecomposed representation as well as to the well-known decomposition into convex polygons with respect to their performance in spatial query processing. This comparison points out that for a wide range of query selectivity the new decomposition techniques clearly outperform both the undecomposed representation and the convex decomposition method. More important than the absolute gain in performance by a factor of up to an order of magnitude is the robust performance of our new decomposition techniques over the whole range of query selectivity

    Efficient computation of partition of unity interpolants through a block-based searching technique

    Full text link
    In this paper we propose a new efficient interpolation tool, extremely suitable for large scattered data sets. The partition of unity method is used and performed by blending Radial Basis Functions (RBFs) as local approximants and using locally supported weight functions. In particular we present a new space-partitioning data structure based on a partition of the underlying generic domain in blocks. This approach allows us to examine only a reduced number of blocks in the search process of the nearest neighbour points, leading to an optimized searching routine. Complexity analysis and numerical experiments in two- and three-dimensional interpolation support our findings. Some applications to geometric modelling are also considered. Moreover, the associated software package written in \textsc{Matlab} is here discussed and made available to the scientific community
    • …
    corecore