1,966 research outputs found

    Generalized modularity matrices

    Get PDF
    Various modularity matrices appeared in the recent literature on network analysis and algebraic graph theory. Their purpose is to allow writing as quadratic forms certain combinatorial functions appearing in the framework of graph clustering problems. In this paper we put in evidence certain common traits of various modularity matrices and shed light on their spectral properties that are at the basis of various theoretical results and practical spectral-type algorithms for community detection

    Bilu-Linial Stable Instances of Max Cut and Minimum Multiway Cut

    Full text link
    We investigate the notion of stability proposed by Bilu and Linial. We obtain an exact polynomial-time algorithm for γ\gamma-stable Max Cut instances with γclognloglogn\gamma \geq c\sqrt{\log n}\log\log n for some absolute constant c>0c > 0. Our algorithm is robust: it never returns an incorrect answer; if the instance is γ\gamma-stable, it finds the maximum cut, otherwise, it either finds the maximum cut or certifies that the instance is not γ\gamma-stable. We prove that there is no robust polynomial-time algorithm for γ\gamma-stable instances of Max Cut when γ<αSC(n/2)\gamma < \alpha_{SC}(n/2), where αSC\alpha_{SC} is the best approximation factor for Sparsest Cut with non-uniform demands. Our algorithm is based on semidefinite programming. We show that the standard SDP relaxation for Max Cut (with 22\ell_2^2 triangle inequalities) is integral if γD221(n)\gamma \geq D_{\ell_2^2\to \ell_1}(n), where D221(n)D_{\ell_2^2\to \ell_1}(n) is the least distortion with which every nn point metric space of negative type embeds into 1\ell_1. On the negative side, we show that the SDP relaxation is not integral when γ<D221(n/2)\gamma < D_{\ell_2^2\to \ell_1}(n/2). Moreover, there is no tractable convex relaxation for γ\gamma-stable instances of Max Cut when γ<αSC(n/2)\gamma < \alpha_{SC}(n/2). That suggests that solving γ\gamma-stable instances with γ=o(logn)\gamma =o(\sqrt{\log n}) might be difficult or impossible. Our results significantly improve previously known results. The best previously known algorithm for γ\gamma-stable instances of Max Cut required that γcn\gamma \geq c\sqrt{n} (for some c>0c > 0) [Bilu, Daniely, Linial, and Saks]. No hardness results were known for the problem. Additionally, we present an algorithm for 4-stable instances of Minimum Multiway Cut. We also study a relaxed notion of weak stability.Comment: 24 page

    Simplified Energy Landscape for Modularity Using Total Variation

    Get PDF
    Networks capture pairwise interactions between entities and are frequently used in applications such as social networks, food networks, and protein interaction networks, to name a few. Communities, cohesive groups of nodes, often form in these applications, and identifying them gives insight into the overall organization of the network. One common quality function used to identify community structure is modularity. In Hu et al. [SIAM J. App. Math., 73(6), 2013], it was shown that modularity optimization is equivalent to minimizing a particular nonconvex total variation (TV) based functional over a discrete domain. They solve this problem, assuming the number of communities is known, using a Merriman, Bence, Osher (MBO) scheme. We show that modularity optimization is equivalent to minimizing a convex TV-based functional over a discrete domain, again, assuming the number of communities is known. Furthermore, we show that modularity has no convex relaxation satisfying certain natural conditions. We therefore, find a manageable non-convex approximation using a Ginzburg Landau functional, which provably converges to the correct energy in the limit of a certain parameter. We then derive an MBO algorithm with fewer hand-tuned parameters than in Hu et al. and which is 7 times faster at solving the associated diffusion equation due to the fact that the underlying discretization is unconditionally stable. Our numerical tests include a hyperspectral video whose associated graph has 2.9x10^7 edges, which is roughly 37 times larger than was handled in the paper of Hu et al.Comment: 25 pages, 3 figures, 3 tables, submitted to SIAM J. App. Mat
    corecore