4,699 research outputs found

    Computing Optimal Morse Matchings

    Full text link
    Morse matchings capture the essential structural information of discrete Morse functions. We show that computing optimal Morse matchings is NP-hard and give an integer programming formulation for the problem. Then we present polyhedral results for the corresponding polytope and report on computational results

    Multi-consensus Decentralized Accelerated Gradient Descent

    Full text link
    This paper considers the decentralized optimization problem, which has applications in large scale machine learning, sensor networks, and control theory. We propose a novel algorithm that can achieve near optimal communication complexity, matching the known lower bound up to a logarithmic factor of the condition number of the problem. Our theoretical results give affirmative answers to the open problem on whether there exists an algorithm that can achieve a communication complexity (nearly) matching the lower bound depending on the global condition number instead of the local one. Moreover, the proposed algorithm achieves the optimal computation complexity matching the lower bound up to universal constants. Furthermore, to achieve a linear convergence rate, our algorithm \emph{doesn't} require the individual functions to be (strongly) convex. Our method relies on a novel combination of known techniques including Nesterov's accelerated gradient descent, multi-consensus and gradient-tracking. The analysis is new, and may be applied to other related problems. Empirical studies demonstrate the effectiveness of our method for machine learning applications

    Dagstuhl Reports : Volume 1, Issue 2, February 2011

    Get PDF
    Online Privacy: Towards Informational Self-Determination on the Internet (Dagstuhl Perspectives Workshop 11061) : Simone Fischer-Hübner, Chris Hoofnagle, Kai Rannenberg, Michael Waidner, Ioannis Krontiris and Michael Marhöfer Self-Repairing Programs (Dagstuhl Seminar 11062) : Mauro Pezzé, Martin C. Rinard, Westley Weimer and Andreas Zeller Theory and Applications of Graph Searching Problems (Dagstuhl Seminar 11071) : Fedor V. Fomin, Pierre Fraigniaud, Stephan Kreutzer and Dimitrios M. Thilikos Combinatorial and Algorithmic Aspects of Sequence Processing (Dagstuhl Seminar 11081) : Maxime Crochemore, Lila Kari, Mehryar Mohri and Dirk Nowotka Packing and Scheduling Algorithms for Information and Communication Services (Dagstuhl Seminar 11091) Klaus Jansen, Claire Mathieu, Hadas Shachnai and Neal E. Youn

    Hardness of Approximation for Morse Matching

    Full text link
    Discrete Morse theory has emerged as a powerful tool for a wide range of problems, including the computation of (persistent) homology. In this context, discrete Morse theory is used to reduce the problem of computing a topological invariant of an input simplicial complex to computing the same topological invariant of a (significantly smaller) collapsed cell or chain complex. Consequently, devising methods for obtaining gradient vector fields on complexes to reduce the size of the problem instance has become an emerging theme over the last decade. While computing the optimal gradient vector field on a simplicial complex is NP-hard, several heuristics have been observed to compute near-optimal gradient vector fields on a wide variety of datasets. Understanding the theoretical limits of these strategies is therefore a fundamental problem in computational topology. In this paper, we consider the approximability of maximization and minimization variants of the Morse matching problem, posed as open problems by Joswig and Pfetsch. We establish hardness results for Max-Morse matching and Min-Morse matching. In particular, we show that, for a simplicial complex with n simplices and dimension d≤3d \leq 3, it is NP-hard to approximate Min-Morse matching within a factor of O(n1−ϵ)O(n^{1-\epsilon}), for any ϵ>0\epsilon > 0. Moreover, using an L-reduction from Degree 3 Max-Acyclic Subgraph to Max-Morse matching, we show that it is both NP-hard and UGC-hard to approximate Max-Morse matching for simplicial complexes of dimension d≤2d \leq 2 within certain explicit constant factors.Comment: 20 pages, 1 figur

    Persistence barcodes and Laplace eigenfunctions on surfaces

    Full text link
    We obtain restrictions on the persistence barcodes of Laplace-Beltrami eigenfunctions and their linear combinations on compact surfaces with Riemannian metrics. Some applications to uniform approximation by linear combinations of Laplace eigenfunctions are also discussed.Comment: Revised version; some references adde
    • …
    corecore