2,210 research outputs found

    Approximation Algorithms for Covering/Packing Integer Programs

    Get PDF
    Given matrices A and B and vectors a, b, c and d, all with non-negative entries, we consider the problem of computing min {c.x: x in Z^n_+, Ax > a, Bx < b, x < d}. We give a bicriteria-approximation algorithm that, given epsilon in (0, 1], finds a solution of cost O(ln(m)/epsilon^2) times optimal, meeting the covering constraints (Ax > a) and multiplicity constraints (x < d), and satisfying Bx < (1 + epsilon)b + beta, where beta is the vector of row sums beta_i = sum_j B_ij. Here m denotes the number of rows of A. This gives an O(ln m)-approximation algorithm for CIP -- minimum-cost covering integer programs with multiplicity constraints, i.e., the special case when there are no packing constraints Bx < b. The previous best approximation ratio has been O(ln(max_j sum_i A_ij)) since 1982. CIP contains the set cover problem as a special case, so O(ln m)-approximation is the best possible unless P=NP.Comment: Preliminary version appeared in IEEE Symposium on Foundations of Computer Science (2001). To appear in Journal of Computer and System Science

    On the Number of Iterations for Dantzig-Wolfe Optimization and Packing-Covering Approximation Algorithms

    Get PDF
    We give a lower bound on the iteration complexity of a natural class of Lagrangean-relaxation algorithms for approximately solving packing/covering linear programs. We show that, given an input with mm random 0/1-constraints on nn variables, with high probability, any such algorithm requires Ω(ρlog(m)/ϵ2)\Omega(\rho \log(m)/\epsilon^2) iterations to compute a (1+ϵ)(1+\epsilon)-approximate solution, where ρ\rho is the width of the input. The bound is tight for a range of the parameters (m,n,ρ,ϵ)(m,n,\rho,\epsilon). The algorithms in the class include Dantzig-Wolfe decomposition, Benders' decomposition, Lagrangean relaxation as developed by Held and Karp [1971] for lower-bounding TSP, and many others (e.g. by Plotkin, Shmoys, and Tardos [1988] and Grigoriadis and Khachiyan [1996]). To prove the bound, we use a discrepancy argument to show an analogous lower bound on the support size of (1+ϵ)(1+\epsilon)-approximate mixed strategies for random two-player zero-sum 0/1-matrix games
    corecore