858 research outputs found

    Approximating Smallest Containers for Packing Three-dimensional Convex Objects

    Get PDF
    We investigate the problem of computing a minimal-volume container for the non-overlapping packing of a given set of three-dimensional convex objects. Already the simplest versions of the problem are NP-hard so that we cannot expect to find exact polynomial time algorithms. We give constant ratio approximation algorithms for packing axis-parallel (rectangular) cuboids under translation into an axis-parallel (rectangular) cuboid as container, for cuboids under rigid motions into an axis-parallel cuboid or into an arbitrary convex container, and for packing convex polyhedra under rigid motions into an axis-parallel cuboid or arbitrary convex container. This work gives the first approximability results for the computation of minimal volume containers for the objects described

    A Pseudopolynomial Algorithm for Alexandrov's Theorem

    Full text link
    Alexandrov's Theorem states that every metric with the global topology and local geometry required of a convex polyhedron is in fact the intrinsic metric of a unique convex polyhedron. Recent work by Bobenko and Izmestiev describes a differential equation whose solution leads to the polyhedron corresponding to a given metric. We describe an algorithm based on this differential equation to compute the polyhedron to arbitrary precision given the metric, and prove a pseudopolynomial bound on its running time. Along the way, we develop pseudopolynomial algorithms for computing shortest paths and weighted Delaunay triangulations on a polyhedral surface, even when the surface edges are not shortest paths.Comment: 25 pages; new Delaunay triangulation algorithm, minor other changes; an abbreviated v2 was at WADS 200

    On some aspects of the CNEM implementation in 3D in order to simulate high speed machining or shearing

    Get PDF
    his paper deals with the implementation in 3D of the constrained natural element method (CNEM) in order to simulate material forming involving large strains. The CNEM is a member of the large family of mesh-free methods, but is at the same time very close to the finite element method. The CNEM’s shape function is built using the constrained Voronoï diagram (the dual of the constrained Delaunay tessella- tion) associated with a domain defined by a set of nodes and a description of its border. The use of the CNEM involves three main steps. First, the constrained Voronoï diagram is built. Thus, for each node, a Voronoï cell is geometrically defined, with respect of the boundary of the domain. Then, the Sibson-type CNEM shape functions are computed. Finally, the discretization of a generic variational for- mulation is defined by invoking an ‘‘stabilized conforming nodal integration’’. In this work, we focus especially on the two last points. In order to compute the Sibson shape function, five algorithms are pre- sented, analyzed and compared, two of them are developed. For the integration task, a discretization strategy is proposed to handle domains with strong non-convexities. These approaches are validated on some 3D benchmarks in elasticity under the hypothesis of small transformations. The obtained results are compared with analytical solutions and with finite elements results. Finally, the 3D CNEM is applied for addressing two forming processes: high speed shearing and machining

    Quantum Random Access Codes with Shared Randomness

    Full text link
    We consider a communication method, where the sender encodes n classical bits into 1 qubit and sends it to the receiver who performs a certain measurement depending on which of the initial bits must be recovered. This procedure is called (n,1,p) quantum random access code (QRAC) where p > 1/2 is its success probability. It is known that (2,1,0.85) and (3,1,0.79) QRACs (with no classical counterparts) exist and that (4,1,p) QRAC with p > 1/2 is not possible. We extend this model with shared randomness (SR) that is accessible to both parties. Then (n,1,p) QRAC with SR and p > 1/2 exists for any n > 0. We give an upper bound on its success probability (the known (2,1,0.85) and (3,1,0.79) QRACs match this upper bound). We discuss some particular constructions for several small values of n. We also study the classical counterpart of this model where n bits are encoded into 1 bit instead of 1 qubit and SR is used. We give an optimal construction for such codes and find their success probability exactly--it is less than in the quantum case. Interactive 3D quantum random access codes are available on-line at http://home.lanet.lv/~sd20008/racs .Comment: 51 pages, 33 figures. New sections added: 1.2, 3.5, 3.8.2, 5.4 (paper appears to be shorter because of smaller margins). Submitted as M.Math thesis at University of Waterloo by M

    An iterative interface reconstruction method for PLIC in general convex grids as part of a Coupled Level Set Volume of Fluid solver

    Get PDF
    Reconstructing the interface within a cell, based on volume fraction and normal direction, is a key part of multiphase flow solvers which make use of piecewise linear interface calculation (PLIC) such as the Coupled Level Set Volume of Fluid (CLSVOF) method. In this paper, we present an iterative method for interface reconstruction (IR) in general convex cells based on tetrahedral decomposition. By splitting the cell into tetrahedra prior to IR the volume of the truncated polyhedron can be calculated much more rapidly than using existing clipping and capping methods. In addition the root finding algorithm is designed to take advantage of the nature of the relationship between volume fraction and interface position by using a combination of Newton's and Muller's methods. In stand-alone tests of the IR algorithm on single cells with up to 20 vertices the proposed method was found to be 2 times faster than an implementation of an existing analytical method, while being easy to implement. It was also found to be 3.4–11.8 times faster than existing iterative methods using clipping and capping and combined with Brent's root finding method. Tests were then carried out of the IR method as part of a CLSVOF solver. For a sphere deformed by a prescribed velocity field the proposed method was found to be up to 33% faster than existing iterative methods. For simulations including the solution of the velocity field the maximum speed up was found to be approximately 52% for a case where 12% of cells lie on the interface. Analysis of the full simulation CPU time budget also indicates that while the proposed method has produced a considerable speed-up, further gains due to increasing the efficiency of the IR method are likely to be small as the IR step now represents only a small proportion of the run time
    • …
    corecore