1,590 research outputs found

    Max-Leaves Spanning Tree is APX-hard for Cubic Graphs

    Full text link
    We consider the problem of finding a spanning tree with maximum number of leaves (MaxLeaf). A 2-approximation algorithm is known for this problem, and a 3/2-approximation algorithm when restricted to graphs where every vertex has degree 3 (cubic graphs). MaxLeaf is known to be APX-hard in general, and NP-hard for cubic graphs. We show that the problem is also APX-hard for cubic graphs. The APX-hardness of the related problem Minimum Connected Dominating Set for cubic graphs follows

    A Faster Exact Algorithm for the Directed Maximum Leaf Spanning Tree Problem

    Full text link
    Given a directed graph G=(V,A)G=(V,A), the Directed Maximum Leaf Spanning Tree problem asks to compute a directed spanning tree (i.e., an out-branching) with as many leaves as possible. By designing a Branch-and-Reduced algorithm combined with the Measure & Conquer technique for running time analysis, we show that the problem can be solved in time \Oh^*(1.9043^n) using polynomial space. Hitherto, there have been only few examples. Provided exponential space this run time upper bound can be lowered to \Oh^*(1.8139^n)

    On the algorithmic complexity of twelve covering and independence parameters of graphs

    Get PDF
    The definitions of four previously studied parameters related to total coverings and total matchings of graphs can be restricted, thereby obtaining eight parameters related to covering and independence, each of which has been studied previously in some form. Here we survey briefly results concerning total coverings and total matchings of graphs, and consider the aforementioned 12 covering and independence parameters with regard to algorithmic complexity. We survey briefly known results for several graph classes, and obtain new NP-completeness results for the minimum total cover and maximum minimal total cover problems in planar graphs, the minimum maximal total matching problem in bipartite and chordal graphs, and the minimum independent dominating set problem in planar cubic graphs

    Spanning Trees with Many Leaves in Graphs without Diamonds and Blossoms

    Full text link
    It is known that graphs on n vertices with minimum degree at least 3 have spanning trees with at least n/4+2 leaves and that this can be improved to (n+4)/3 for cubic graphs without the diamond K_4-e as a subgraph. We generalize the second result by proving that every graph with minimum degree at least 3, without diamonds and certain subgraphs called blossoms, has a spanning tree with at least (n+4)/3 leaves, and generalize this further by allowing vertices of lower degree. We show that it is necessary to exclude blossoms in order to obtain a bound of the form n/3+c. We use the new bound to obtain a simple FPT algorithm, which decides in O(m)+O^*(6.75^k) time whether a graph of size m has a spanning tree with at least k leaves. This improves the best known time complexity for MAX LEAF SPANNING TREE.Comment: 25 pages, 27 Figure

    On Feedback Vertex Set: New Measure and New Structures

    Full text link
    We present a new parameterized algorithm for the {feedback vertex set} problem ({\sc fvs}) on undirected graphs. We approach the problem by considering a variation of it, the {disjoint feedback vertex set} problem ({\sc disjoint-fvs}), which finds a feedback vertex set of size kk that has no overlap with a given feedback vertex set FF of the graph GG. We develop an improved kernelization algorithm for {\sc disjoint-fvs} and show that {\sc disjoint-fvs} can be solved in polynomial time when all vertices in GFG \setminus F have degrees upper bounded by three. We then propose a new branch-and-search process on {\sc disjoint-fvs}, and introduce a new branch-and-search measure. The process effectively reduces a given graph to a graph on which {\sc disjoint-fvs} becomes polynomial-time solvable, and the new measure more accurately evaluates the efficiency of the process. These algorithmic and combinatorial studies enable us to develop an O(3.83k)O^*(3.83^k)-time parameterized algorithm for the general {\sc fvs} problem, improving all previous algorithms for the problem.Comment: Final version, to appear in Algorithmic
    corecore