2,190 research outputs found

    Improved Parameterized Algorithms for Constraint Satisfaction

    Full text link
    For many constraint satisfaction problems, the algorithm which chooses a random assignment achieves the best possible approximation ratio. For instance, a simple random assignment for {\sc Max-E3-Sat} allows 7/8-approximation and for every \eps >0 there is no polynomial-time (7/8+\eps)-approximation unless P=NP. Another example is the {\sc Permutation CSP} of bounded arity. Given the expected fraction ρ\rho of the constraints satisfied by a random assignment (i.e. permutation), there is no (\rho+\eps)-approximation algorithm for every \eps >0, assuming the Unique Games Conjecture (UGC). In this work, we consider the following parameterization of constraint satisfaction problems. Given a set of mm constraints of constant arity, can we satisfy at least ρm+k\rho m +k constraint, where ρ\rho is the expected fraction of constraints satisfied by a random assignment? {\sc Constraint Satisfaction Problems above Average} have been posed in different forms in the literature \cite{Niedermeier2006,MahajanRamanSikdar09}. We present a faster parameterized algorithm for deciding whether m/2+k/2m/2+k/2 equations can be simultaneously satisfied over F2{\mathbb F}_2. As a consequence, we obtain O(k)O(k)-variable bikernels for {\sc boolean CSPs} of arity cc for every fixed cc, and for {\sc permutation CSPs} of arity 3. This implies linear bikernels for many problems under the "above average" parameterization, such as {\sc Max-cc-Sat}, {\sc Set-Splitting}, {\sc Betweenness} and {\sc Max Acyclic Subgraph}. As a result, all the parameterized problems we consider in this paper admit 2O(k)2^{O(k)}-time algorithms. We also obtain non-trivial hybrid algorithms for every Max cc-CSP: for every instance II, we can either approximate II beyond the random assignment threshold in polynomial time, or we can find an optimal solution to II in subexponential time.Comment: A preliminary version of this paper has been accepted for IPEC 201

    Approximation for Maximum Surjective Constraint Satisfaction Problems

    Full text link
    Maximum surjective constraint satisfaction problems (Max-Sur-CSPs) are computational problems where we are given a set of variables denoting values from a finite domain B and a set of constraints on the variables. A solution to such a problem is a surjective mapping from the set of variables to B such that the number of satisfied constraints is maximized. We study the approximation performance that can be acccchieved by algorithms for these problems, mainly by investigating their relation with Max-CSPs (which are the corresponding problems without the surjectivity requirement). Our work gives a complexity dichotomy for Max-Sur-CSP(B) between PTAS and APX-complete, under the assumption that there is a complexity dichotomy for Max-CSP(B) between PO and APX-complete, which has already been proved on the Boolean domain and 3-element domains

    The complexity of approximating conservative counting CSPs

    Get PDF
    We study the complexity of approximately solving the weighted counting constraint satisfaction problem #CSP(F). In the conservative case, where F contains all unary functions, there is a classification known for the case in which the domain of functions in F is Boolean. In this paper, we give a classification for the more general problem where functions in F have an arbitrary finite domain. We define the notions of weak log-modularity and weak log-supermodularity. We show that if F is weakly log-modular, then #CSP(F)is in FP. Otherwise, it is at least as difficult to approximate as #BIS, the problem of counting independent sets in bipartite graphs. #BIS is complete with respect to approximation-preserving reductions for a logically-defined complexity class #RHPi1, and is believed to be intractable. We further sub-divide the #BIS-hard case. If F is weakly log-supermodular, then we show that #CSP(F) is as easy as a (Boolean) log-supermodular weighted #CSP. Otherwise, we show that it is NP-hard to approximate. Finally, we give a full trichotomy for the arity-2 case, where #CSP(F) is in FP, or is #BIS-equivalent, or is equivalent in difficulty to #SAT, the problem of approximately counting the satisfying assignments of a Boolean formula in conjunctive normal form. We also discuss the algorithmic aspects of our classification.Comment: Minor revisio

    Near-Optimal UGC-hardness of Approximating Max k-CSP_R

    Get PDF
    In this paper, we prove an almost-optimal hardness for Max kk-CSPR_R based on Khot's Unique Games Conjecture (UGC). In Max kk-CSPR_R, we are given a set of predicates each of which depends on exactly kk variables. Each variable can take any value from 1,2,,R1, 2, \dots, R. The goal is to find an assignment to variables that maximizes the number of satisfied predicates. Assuming the Unique Games Conjecture, we show that it is NP-hard to approximate Max kk-CSPR_R to within factor 2O(klogk)(logR)k/2/Rk12^{O(k \log k)}(\log R)^{k/2}/R^{k - 1} for any k,Rk, R. To the best of our knowledge, this result improves on all the known hardness of approximation results when 3k=o(logR/loglogR)3 \leq k = o(\log R/\log \log R). In this case, the previous best hardness result was NP-hardness of approximating within a factor O(k/Rk2)O(k/R^{k-2}) by Chan. When k=2k = 2, our result matches the best known UGC-hardness result of Khot, Kindler, Mossel and O'Donnell. In addition, by extending an algorithm for Max 2-CSPR_R by Kindler, Kolla and Trevisan, we provide an Ω(logR/Rk1)\Omega(\log R/R^{k - 1})-approximation algorithm for Max kk-CSPR_R. This algorithm implies that our inapproximability result is tight up to a factor of 2O(klogk)(logR)k/212^{O(k \log k)}(\log R)^{k/2 - 1}. In comparison, when 3k3 \leq k is a constant, the previously known gap was O(R)O(R), which is significantly larger than our gap of O(polylog R)O(\text{polylog } R). Finally, we show that we can replace the Unique Games Conjecture assumption with Khot's dd-to-1 Conjecture and still get asymptotically the same hardness of approximation

    Approximation Resistant Predicates From Pairwise Independence

    Full text link
    We study the approximability of predicates on kk variables from a domain [q][q], and give a new sufficient condition for such predicates to be approximation resistant under the Unique Games Conjecture. Specifically, we show that a predicate PP is approximation resistant if there exists a balanced pairwise independent distribution over [q]k[q]^k whose support is contained in the set of satisfying assignments to PP
    corecore