674 research outputs found

    Low-Degree Spanning Trees of Small Weight

    Get PDF
    The degree-d spanning tree problem asks for a minimum-weight spanning tree in which the degree of each vertex is at most d. When d=2 the problem is TSP, and in this case, the well-known Christofides algorithm provides a 1.5-approximation algorithm (assuming the edge weights satisfy the triangle inequality). In 1984, Christos Papadimitriou and Umesh Vazirani posed the challenge of finding an algorithm with performance guarantee less than 2 for Euclidean graphs (points in R^n) and d > 2. This paper gives the first answer to that challenge, presenting an algorithm to compute a degree-3 spanning tree of cost at most 5/3 times the MST. For points in the plane, the ratio improves to 3/2 and the algorithm can also find a degree-4 spanning tree of cost at most 5/4 times the MST.Comment: conference version in Symposium on Theory of Computing (1994

    Network Optimization on Partitioned Pairs of Points

    Get PDF
    Given n pairs of points, S = {{p_1, q_1}, {p_2, q_2}, ..., {p_n, q_n}}, in some metric space, we study the problem of two-coloring the points within each pair, red and blue, to optimize the cost of a pair of node-disjoint networks, one over the red points and one over the blue points. In this paper we consider our network structures to be spanning trees, traveling salesman tours or matchings. We consider several different weight functions computed over the network structures induced, as well as several different objective functions. We show that some of these problems are NP-hard, and provide constant factor approximation algorithms in all cases
    • …
    corecore