188 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    LIPIcs, Volume 261, ICALP 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 261, ICALP 2023, Complete Volum

    Sampling and Certifying Symmetric Functions

    Get PDF

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Technology and Management Applied in Construction Engineering Projects

    Get PDF
    This book focuses on fundamental and applied research on construction project management. It presents research papers and practice-oriented papers. The execution of construction projects is specific and particularly difficult because each implementation is a unique, complex, and dynamic process that consists of several or more subprocesses that are related to each other, in which various aspects of the investment process participate. Therefore, there is still a vital need to study, research, and conclude the engineering technology and management applied in construction projects. This book present unanimous research approach is a result of many years of studies, conducted by 35 well experienced authors. The common subject of research concerns the development of methods and tools for modeling multi-criteria processes in construction engineering

    LIPIcs, Volume 258, SoCG 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 258, SoCG 2023, Complete Volum

    Maximum Matching via Maximal Matching Queries

    Get PDF
    We study approximation algorithms for Maximum Matching that are given access to the input graph solely via an edge-query maximal matching oracle. More specifically, in each round, an algorithm queries a set of potential edges and the oracle returns a maximal matching in the subgraph spanned by the query edges that are also contained in the input graph. This model is more general than the vertex-query model introduced by binti Khalil and Konrad [FSTTCS\u2720], where each query consists of a subset of vertices and the oracle returns a maximal matching in the subgraph of the input graph induced by the queried vertices. In this paper, we give tight bounds for deterministic edge-query algorithms for up to three rounds. In more detail: 1) As our main result, we give a deterministic 3-round edge-query algorithm with approximation factor 0.625 on bipartite graphs. This result establishes a separation between the edge-query and the vertex-query models since every deterministic 3-round vertex-query algorithm has an approximation factor of at most 0.6 [binti Khalil, Konrad, FSTTCS\u2720], even on bipartite graphs. Our algorithm can also be implemented in the semi-streaming model of computation in a straightforward manner and improves upon the state-of-the-art 3-pass 0.6111-approximation algorithm by Feldman and Szarf [APPROX\u2722] for bipartite graphs. 2) We show that the aforementioned algorithm is optimal in that every deterministic 3-round edge-query algorithm has an approximation factor of at most 0.625, even on bipartite graphs. 3) Last, we also give optimal bounds for one and two query rounds, where the best approximation factors achievable are 1/2 and 1/2 + ?(1/n), respectively, where n is the number of vertices in the input graph

    Robust Sparsification for Matroid Intersection with Applications

    Full text link
    Matroid intersection is a classical optimization problem where, given two matroids over the same ground set, the goal is to find the largest common independent set. In this paper, we show that there exists a certain "sparsifer": a subset of elements, of size O(Sopt1/ε)O(|S^{opt}| \cdot 1/\varepsilon), where SoptS^{opt} denotes the optimal solution, that is guaranteed to contain a 3/2+ε3/2 + \varepsilon approximation, while guaranteeing certain robustness properties. We call such a small subset a Density Constrained Subset (DCS), which is inspired by the Edge-Degree Constrained Subgraph (EDCS) [Bernstein and Stein, 2015], originally designed for the maximum cardinality matching problem in a graph. Our proof is constructive and hinges on a greedy decomposition of matroids, which we call the density-based decomposition. We show that this sparsifier has certain robustness properties that can be used in one-way communication and random-order streaming models
    corecore