1,302 research outputs found

    A Plane Wave Virtual Element Method for the Helmholtz Problem

    Get PDF
    We introduce and analyze a virtual element method (VEM) for the Helmholtz problem with approximating spaces made of products of low order VEM functions and plane waves. We restrict ourselves to the 2D Helmholtz equation with impedance boundary conditions on the whole domain boundary. The main ingredients of the plane wave VEM scheme are: i) a low frequency space made of VEM functions, whose basis functions are not explicitly computed in the element interiors; ii) a proper local projection operator onto the high-frequency space, made of plane waves; iii) an approximate stabilization term. A convergence result for the h-version of the method is proved, and numerical results testing its performance on general polygonal meshes are presented

    An Unstructured Mesh Convergent Reaction-Diffusion Master Equation for Reversible Reactions

    Full text link
    The convergent reaction-diffusion master equation (CRDME) was recently developed to provide a lattice particle-based stochastic reaction-diffusion model that is a convergent approximation in the lattice spacing to an underlying spatially-continuous particle dynamics model. The CRDME was designed to be identical to the popular lattice reaction-diffusion master equation (RDME) model for systems with only linear reactions, while overcoming the RDME's loss of bimolecular reaction effects as the lattice spacing is taken to zero. In our original work we developed the CRDME to handle bimolecular association reactions on Cartesian grids. In this work we develop several extensions to the CRDME to facilitate the modeling of cellular processes within realistic biological domains. Foremost, we extend the CRDME to handle reversible bimolecular reactions on unstructured grids. Here we develop a generalized CRDME through discretization of the spatially continuous volume reactivity model, extending the CRDME to encompass a larger variety of particle-particle interactions. Finally, we conclude by examining several numerical examples to demonstrate the convergence and accuracy of the CRDME in approximating the volume reactivity model.Comment: 35 pages, 9 figures. Accepted, J. Comp. Phys. (2018

    Polynomial Meshes: Computation and Approximation

    Get PDF
    We present the software package WAM, written in Matlab, that generates Weakly Admissible Meshes and Discrete Extremal Sets of Fekete and Leja type, for 2d and 3d polynomial least squares and interpolation on compact sets with various geometries. Possible applications range from data fitting to high-order methods for PDEs

    An adaptive, hanging-node, discontinuous isogeometric analysis method for the first-order form of the neutron transport equation with discrete ordinate (SN) angular discretisation

    Get PDF
    In this paper a discontinuous, hanging-node, isogeometric analysis (IGA) method is developed and applied to the first-order form of the neutron transport equation with a discrete ordinate (SN) angular discretisation in two-dimensional space. The complexities involved in upwinding across curved element boundaries that contain hanging-nodes have been addressed to ensure that the scheme remains conservative. A robust algorithm for cycle-breaking has also been introduced in order to develop a unique sweep ordering of the elements for each discrete ordinates direction. The convergence rate of the scheme has been verified using the method of manufactured solutions (MMS) with a smooth solution. Heuristic error indicators have been used to drive an adaptive mesh refinement (AMR) algorithm to take advantage of the hanging-node discretisation. The effectiveness of this method is demonstrated for three test cases. The first is a homogeneous square in a vacuum with varying mean free path and a prescribed extraneous unit source. The second test case is a radiation shielding problem and the third is a 3×3 “supercell” featuring a burnable absorber. In the final test case, comparisons are made to the discontinuous Galerkin finite element method (DGFEM) using both straight-sided and curved quadratic finite elements

    PARAMETRIZATION AND SHAPE RECONSTRUCTION TECHNIQUES FOR DOO-SABIN SUBDIVISION SURFACES

    Get PDF
    This thesis presents a new technique for the reconstruction of a smooth surface from a set of 3D data points. The reconstructed surface is represented by an everywhere -continuous subdivision surface which interpolates all the given data points. And the topological structure of the reconstructed surface is exactly the same as that of the data points. The new technique consists of two major steps. First, use an efficient surface reconstruction method to produce a polyhedral approximation to the given data points. Second, construct a Doo-Sabin subdivision surface that smoothly passes through all the data points in the given data set. A new technique is presented for the second step in this thesis. The new technique iteratively modifies the vertices of the polyhedral approximation 1CM until a new control meshM, whose Doo-Sabin subdivision surface interpolatesM, is reached. It is proved that, for any mesh M with any size and any topology, the iterative process is always convergent with Doo-Sabin subdivision scheme. The new technique has the advantages of both a local method and a global method, and the surface reconstruction process can reproduce special features such as edges and corners faithfully
    • …
    corecore