469 research outputs found

    On Approximating the Number of kk-cliques in Sublinear Time

    Full text link
    We study the problem of approximating the number of kk-cliques in a graph when given query access to the graph. We consider the standard query model for general graphs via (1) degree queries, (2) neighbor queries and (3) pair queries. Let nn denote the number of vertices in the graph, mm the number of edges, and CkC_k the number of kk-cliques. We design an algorithm that outputs a (1+Δ)(1+\varepsilon)-approximation (with high probability) for CkC_k, whose expected query complexity and running time are O\left(\frac{n}{C_k^{1/k}}+\frac{m^{k/2}}{C_k}\right)\poly(\log n,1/\varepsilon,k). Hence, the complexity of the algorithm is sublinear in the size of the graph for Ck=ω(mk/2−1)C_k = \omega(m^{k/2-1}). Furthermore, we prove a lower bound showing that the query complexity of our algorithm is essentially optimal (up to the dependence on log⁥n\log n, 1/Δ1/\varepsilon and kk). The previous results in this vein are by Feige (SICOMP 06) and by Goldreich and Ron (RSA 08) for edge counting (k=2k=2) and by Eden et al. (FOCS 2015) for triangle counting (k=3k=3). Our result matches the complexities of these results. The previous result by Eden et al. hinges on a certain amortization technique that works only for triangle counting, and does not generalize for larger cliques. We obtain a general algorithm that works for any k≄3k\geq 3 by designing a procedure that samples each kk-clique incident to a given set SS of vertices with approximately equal probability. The primary difficulty is in finding cliques incident to purely high-degree vertices, since random sampling within neighbors has a low success probability. This is achieved by an algorithm that samples uniform random high degree vertices and a careful tradeoff between estimating cliques incident purely to high-degree vertices and those that include a low-degree vertex

    Probabilistic Spectral Sparsification In Sublinear Time

    Full text link
    In this paper, we introduce a variant of spectral sparsification, called probabilistic (Δ,Ύ)(\varepsilon,\delta)-spectral sparsification. Roughly speaking, it preserves the cut value of any cut (S,Sc)(S,S^{c}) with an 1±Δ1\pm\varepsilon multiplicative error and a Ύ∣S∣\delta\left|S\right| additive error. We show how to produce a probabilistic (Δ,Ύ)(\varepsilon,\delta)-spectral sparsifier with O(nlog⁥n/Δ2)O(n\log n/\varepsilon^{2}) edges in time O~(n/Δ2Ύ)\tilde{O}(n/\varepsilon^{2}\delta) time for unweighted undirected graph. This gives fastest known sub-linear time algorithms for different cut problems on unweighted undirected graph such as - An O~(n/OPT+n3/2+t)\tilde{O}(n/OPT+n^{3/2+t}) time O(log⁥n/t)O(\sqrt{\log n/t})-approximation algorithm for the sparsest cut problem and the balanced separator problem. - A n1+o(1)/Δ4n^{1+o(1)}/\varepsilon^{4} time approximation minimum s-t cut algorithm with an Δn\varepsilon n additive error

    Sublinear-Time Algorithms for Monomer-Dimer Systems on Bounded Degree Graphs

    Full text link
    For a graph GG, let Z(G,λ)Z(G,\lambda) be the partition function of the monomer-dimer system defined by ∑kmk(G)λk\sum_k m_k(G)\lambda^k, where mk(G)m_k(G) is the number of matchings of size kk in GG. We consider graphs of bounded degree and develop a sublinear-time algorithm for estimating log⁥Z(G,λ)\log Z(G,\lambda) at an arbitrary value λ>0\lambda>0 within additive error Ï”n\epsilon n with high probability. The query complexity of our algorithm does not depend on the size of GG and is polynomial in 1/Ï”1/\epsilon, and we also provide a lower bound quadratic in 1/Ï”1/\epsilon for this problem. This is the first analysis of a sublinear-time approximation algorithm for a # P-complete problem. Our approach is based on the correlation decay of the Gibbs distribution associated with Z(G,λ)Z(G,\lambda). We show that our algorithm approximates the probability for a vertex to be covered by a matching, sampled according to this Gibbs distribution, in a near-optimal sublinear time. We extend our results to approximate the average size and the entropy of such a matching within an additive error with high probability, where again the query complexity is polynomial in 1/Ï”1/\epsilon and the lower bound is quadratic in 1/Ï”1/\epsilon. Our algorithms are simple to implement and of practical use when dealing with massive datasets. Our results extend to other systems where the correlation decay is known to hold as for the independent set problem up to the critical activity

    Estimating the weight of metric minimum spanning trees in sublinear time

    Get PDF
    In this paper we present a sublinear-time (1+Δ)(1+\varepsilon)-approximation randomized algorithm to estimate the weight of the minimum spanning tree of an nn-point metric space. The running time of the algorithm is O~(n/ΔO(1))\widetilde{\mathcal{O}}(n/\varepsilon^{\mathcal{O}(1)}). Since the full description of an nn-point metric space is of size Θ(n2)\Theta(n^2), the complexity of our algorithm is sublinear with respect to the input size. Our algorithm is almost optimal as it is not possible to approximate in o(n)o(n) time the weight of the minimum spanning tree to within any factor. We also show that no deterministic algorithm can achieve a BB-approximation in o(n2/B3)o(n^2/B^3) time. Furthermore, it has been previously shown that no o(n2)o(n^2) algorithm exists that returns a spanning tree whose weight is within a constant times the optimum

    Best of Two Local Models: Local Centralized and Local Distributed Algorithms

    Full text link
    We consider two models of computation: centralized local algorithms and local distributed algorithms. Algorithms in one model are adapted to the other model to obtain improved algorithms. Distributed vertex coloring is employed to design improved centralized local algorithms for: maximal independent set, maximal matching, and an approximation scheme for maximum (weighted) matching over bounded degree graphs. The improvement is threefold: the algorithms are deterministic, stateless, and the number of probes grows polynomially in log⁡∗n\log^* n, where nn is the number of vertices of the input graph. The recursive centralized local improvement technique by Nguyen and Onak~\cite{onak2008} is employed to obtain an improved distributed approximation scheme for maximum (weighted) matching. The improvement is twofold: we reduce the number of rounds from O(log⁡n)O(\log n) to O(log⁡∗n)O(\log^*n) for a wide range of instances and, our algorithms are deterministic rather than randomized

    Dynamic Graph Stream Algorithms in o(n)o(n) Space

    Get PDF
    In this paper we study graph problems in dynamic streaming model, where the input is defined by a sequence of edge insertions and deletions. As many natural problems require Ω(n)\Omega(n) space, where nn is the number of vertices, existing works mainly focused on designing O~(n)\tilde{O}(n) space algorithms. Although sublinear in the number of edges for dense graphs, it could still be too large for many applications (e.g. nn is huge or the graph is sparse). In this work, we give single-pass algorithms beating this space barrier for two classes of problems. We present o(n)o(n) space algorithms for estimating the number of connected components with additive error Δn\varepsilon n and (1+Δ)(1+\varepsilon)-approximating the weight of minimum spanning tree, for any small constant Δ>0\varepsilon>0. The latter improves previous O~(n)\tilde{O}(n) space algorithm given by Ahn et al. (SODA 2012) for connected graphs with bounded edge weights. We initiate the study of approximate graph property testing in the dynamic streaming model, where we want to distinguish graphs satisfying the property from graphs that are Δ\varepsilon-far from having the property. We consider the problem of testing kk-edge connectivity, kk-vertex connectivity, cycle-freeness and bipartiteness (of planar graphs), for which, we provide algorithms using roughly O~(n1−Δ)\tilde{O}(n^{1-\varepsilon}) space, which is o(n)o(n) for any constant Δ\varepsilon. To complement our algorithms, we present Ω(n1−O(Δ))\Omega(n^{1-O(\varepsilon)}) space lower bounds for these problems, which show that such a dependence on Δ\varepsilon is necessary.Comment: ICALP 201
    • 

    corecore