1,706 research outputs found

    Approximating the Smallest Spanning Subgraph for 2-Edge-Connectivity in Directed Graphs

    Full text link
    Let GG be a strongly connected directed graph. We consider the following three problems, where we wish to compute the smallest strongly connected spanning subgraph of GG that maintains respectively: the 22-edge-connected blocks of GG (\textsf{2EC-B}); the 22-edge-connected components of GG (\textsf{2EC-C}); both the 22-edge-connected blocks and the 22-edge-connected components of GG (\textsf{2EC-B-C}). All three problems are NP-hard, and thus we are interested in efficient approximation algorithms. For \textsf{2EC-C} we can obtain a 3/23/2-approximation by combining previously known results. For \textsf{2EC-B} and \textsf{2EC-B-C}, we present new 44-approximation algorithms that run in linear time. We also propose various heuristics to improve the size of the computed subgraphs in practice, and conduct a thorough experimental study to assess their merits in practical scenarios

    Approximating the Minimum Equivalent Digraph

    Full text link
    The MEG (minimum equivalent graph) problem is, given a directed graph, to find a small subset of the edges that maintains all reachability relations between nodes. The problem is NP-hard. This paper gives an approximation algorithm with performance guarantee of pi^2/6 ~ 1.64. The algorithm and its analysis are based on the simple idea of contracting long cycles. (This result is strengthened slightly in ``On strongly connected digraphs with bounded cycle length'' (1996).) The analysis applies directly to 2-Exchange, a simple ``local improvement'' algorithm, showing that its performance guarantee is 1.75.Comment: conference version in ACM-SIAM Symposium on Discrete Algorithms (1994

    Approximability of Connected Factors

    Get PDF
    Finding a d-regular spanning subgraph (or d-factor) of a graph is easy by Tutte's reduction to the matching problem. By the same reduction, it is easy to find a minimal or maximal d-factor of a graph. However, if we require that the d-factor is connected, these problems become NP-hard - finding a minimal connected 2-factor is just the traveling salesman problem (TSP). Given a complete graph with edge weights that satisfy the triangle inequality, we consider the problem of finding a minimal connected dd-factor. We give a 3-approximation for all dd and improve this to an (r+1)-approximation for even d, where r is the approximation ratio of the TSP. This yields a 2.5-approximation for even d. The same algorithm yields an (r+1)-approximation for the directed version of the problem, where r is the approximation ratio of the asymmetric TSP. We also show that none of these minimization problems can be approximated better than the corresponding TSP. Finally, for the decision problem of deciding whether a given graph contains a connected d-factor, we extend known hardness results.Comment: To appear in the proceedings of WAOA 201

    Parameterized Approximation Algorithms for Bidirected Steiner Network Problems

    Get PDF
    The Directed Steiner Network (DSN) problem takes as input a directed edge-weighted graph G=(V,E)G=(V,E) and a set DV×V\mathcal{D}\subseteq V\times V of kk demand pairs. The aim is to compute the cheapest network NGN\subseteq G for which there is an sts\to t path for each (s,t)D(s,t)\in\mathcal{D}. It is known that this problem is notoriously hard as there is no k1/4o(1)k^{1/4-o(1)}-approximation algorithm under Gap-ETH, even when parametrizing the runtime by kk [Dinur & Manurangsi, ITCS 2018]. In light of this, we systematically study several special cases of DSN and determine their parameterized approximability for the parameter kk. For the bi-DSNPlanar_\text{Planar} problem, the aim is to compute a planar optimum solution NGN\subseteq G in a bidirected graph GG, i.e., for every edge uvuv of GG the reverse edge vuvu exists and has the same weight. This problem is a generalization of several well-studied special cases. Our main result is that this problem admits a parameterized approximation scheme (PAS) for kk. We also prove that our result is tight in the sense that (a) the runtime of our PAS cannot be significantly improved, and (b) it is unlikely that a PAS exists for any generalization of bi-DSNPlanar_\text{Planar}, unless FPT=W[1]. One important special case of DSN is the Strongly Connected Steiner Subgraph (SCSS) problem, for which the solution network NGN\subseteq G needs to strongly connect a given set of kk terminals. It has been observed before that for SCSS a parameterized 22-approximation exists when parameterized by kk [Chitnis et al., IPEC 2013]. We give a tight inapproximability result by showing that for kk no parameterized (2ε)(2-\varepsilon)-approximation algorithm exists under Gap-ETH. Additionally we show that when restricting the input of SCSS to bidirected graphs, the problem remains NP-hard but becomes FPT for kk

    Rectangular Layouts and Contact Graphs

    Get PDF
    Contact graphs of isothetic rectangles unify many concepts from applications including VLSI and architectural design, computational geometry, and GIS. Minimizing the area of their corresponding {\em rectangular layouts} is a key problem. We study the area-optimization problem and show that it is NP-hard to find a minimum-area rectangular layout of a given contact graph. We present O(n)-time algorithms that construct O(n2)O(n^2)-area rectangular layouts for general contact graphs and O(nlogn)O(n\log n)-area rectangular layouts for trees. (For trees, this is an O(logn)O(\log n)-approximation algorithm.) We also present an infinite family of graphs (rsp., trees) that require Ω(n2)\Omega(n^2) (rsp., Ω(nlogn)\Omega(n\log n)) area. We derive these results by presenting a new characterization of graphs that admit rectangular layouts using the related concept of {\em rectangular duals}. A corollary to our results relates the class of graphs that admit rectangular layouts to {\em rectangle of influence drawings}.Comment: 28 pages, 13 figures, 55 references, 1 appendi

    From Gap-ETH to FPT-Inapproximability: Clique, Dominating Set, and More

    Full text link
    We consider questions that arise from the intersection between the areas of polynomial-time approximation algorithms, subexponential-time algorithms, and fixed-parameter tractable algorithms. The questions, which have been asked several times (e.g., [Marx08, FGMS12, DF13]), are whether there is a non-trivial FPT-approximation algorithm for the Maximum Clique (Clique) and Minimum Dominating Set (DomSet) problems parameterized by the size of the optimal solution. In particular, letting OPT\text{OPT} be the optimum and NN be the size of the input, is there an algorithm that runs in t(OPT)poly(N)t(\text{OPT})\text{poly}(N) time and outputs a solution of size f(OPT)f(\text{OPT}), for any functions tt and ff that are independent of NN (for Clique, we want f(OPT)=ω(1)f(\text{OPT})=\omega(1))? In this paper, we show that both Clique and DomSet admit no non-trivial FPT-approximation algorithm, i.e., there is no o(OPT)o(\text{OPT})-FPT-approximation algorithm for Clique and no f(OPT)f(\text{OPT})-FPT-approximation algorithm for DomSet, for any function ff (e.g., this holds even if ff is the Ackermann function). In fact, our results imply something even stronger: The best way to solve Clique and DomSet, even approximately, is to essentially enumerate all possibilities. Our results hold under the Gap Exponential Time Hypothesis (Gap-ETH) [Dinur16, MR16], which states that no 2o(n)2^{o(n)}-time algorithm can distinguish between a satisfiable 3SAT formula and one which is not even (1ϵ)(1 - \epsilon)-satisfiable for some constant ϵ>0\epsilon > 0. Besides Clique and DomSet, we also rule out non-trivial FPT-approximation for Maximum Balanced Biclique, Maximum Subgraphs with Hereditary Properties, and Maximum Induced Matching in bipartite graphs. Additionally, we rule out ko(1)k^{o(1)}-FPT-approximation algorithm for Densest kk-Subgraph although this ratio does not yet match the trivial O(k)O(k)-approximation algorithm.Comment: 43 pages. To appear in FOCS'1
    corecore