1,896 research outputs found

    Approximating Mexican highways with slime mould

    Full text link
    Plasmodium of Physarum polycephalum is a single cell visible by unaided eye. During its foraging behavior the cell spans spatially distributed sources of nutrients with a protoplasmic network. Geometrical structure of the protoplasmic networks allows the plasmodium to optimize transport of nutrients between remote parts of its body. Assuming major Mexican cities are sources of nutrients how much structure of Physarum protoplasmic network correspond to structure of Mexican Federal highway network? To find an answer undertook a series of laboratory experiments with living Physarum polycephalum. We represent geographical locations of major cities by oat flakes, place a piece of plasmodium in Mexico city area, record the plasmodium's foraging behavior and extract topology of nutrient transport networks. Results of our experiments show that the protoplasmic network formed by Physarum is isomorphic, subject to limitations imposed, to a network of principle highways. Ideas and results of the paper may contribute towards future developments in bio-inspired road planning

    Design of Combined Coverage Area Reporting and Geo-casting of Queries for Wireless Sensor Networks

    Get PDF
    In order to efficiently deal with queries or other location dependent information, it is key that the wireless sensor network informs gateways what geographical area is serviced by which gateway. The gateways are then able to e.g. efficiently route queries which are only valid in particular regions of the deployment. The proposed algorithms combine coverage area reporting and geographical routing of queries which are injected by gateways.\u

    A Distributed Routing Algorithm for Internet-wide Geocast

    Get PDF
    Geocast is the concept of sending data packets to nodes in a specified geographical area instead of nodes with a specific address. To route geocast messages to their destination we need a geographic routing algorithm that can route packets efficiently to the devices inside the destination area. Our goal is to design an algorithm that can deliver shortest path tree like forwarding while relying purely on distributed data without central knowledge. In this paper, we present two algorithms for geographic routing. One based purely on distance vector data, and one more complicated algorithm based on path data. In our evaluation, we show that our purely distance vector based algorithm can come close to shortest path tree performance when a small number of routers are present in the destination area. We also show that our path based algorithm can come close to the performance of a shortest path tree in almost all geocast situations

    Slime mould imitation of Belgian transport networks: redundancy, bio-essential motorways, and dissolution

    Full text link
    Belgium is amongst few artificial countries, established on purpose, when Dutch and French speaking parts were joined in a single unit. This makes Belgium a particularly interesting testbed for studying bio-inspired techniques for simulation and analysis of vehicular transport networks. We imitate growth and formation of a transport network between major urban areas in Belgium using the acellular slime mould Physarum polycephalum. We represent the urban areas with the sources of nutrients. The slime mould spans the sources of nutrients with a network of protoplasmic tubes. The protoplasmic tubes represent the motorways. In an experimental laboratory analysis we compare the motorway network approximated by P. polycephalum and the man-made motorway network of Belgium. We evaluate the efficiency of the slime mould network and the motorway network using proximity graphs

    Cooperative sensing of spectrum opportunities

    Get PDF
    Reliability and availability of sensing information gathered from local spectrum sensing (LSS) by a single Cognitive Radio is strongly affected by the propagation conditions, period of sensing, and geographical position of the device. For this reason, cooperative spectrum sensing (CSS) was largely proposed in order to improve LSS performance by using cooperation between Secondary Users (SUs). The goal of this chapter is to provide a general analysis on CSS for cognitive radio networks (CRNs). Firstly, the theoretical system model for centralized CSS is introduced, together with a preliminary discussion on several fusion rules and operative modes. Moreover, three main aspects of CSS that substantially differentiate the theoretical model from realistic application scenarios are analyzed: (i) the presence of spatiotemporal correlation between decisions by different SUs; (ii) the possible mobility of SUs; and (iii) the nonideality of the control channel between the SUs and the Fusion Center (FC). For each aspect, a possible practical solution for network organization is presented, showing that, in particular for the first two aspects, cluster-based CSS, in which sensing SUs are properly chosen, could mitigate the impact of such realistic assumptions
    • …
    corecore