318 research outputs found

    Supporting Sustainable Virtual Network Mutations with Mystique

    Get PDF
    The abiding attempt of automation has also permeated the networks, with the ability to measure, analyze, and control themselves in an automated manner, by reacting to changes in the environment (e.g., demand). When provided with these features, networks are often labeled as "self-driving" or "autonomous". In this regard, the provision and orchestration of physical or virtual resources are crucial for both Quality of Service (QoS) guarantees and cost management in the edge/cloud computing environment. To effectively manage the lifecycle of these resources, an auto-scaling mechanism is essential. However, traditional threshold-based and recent Machine Learning (ML)-based policies are often unable to address the soaring complexity of networks due to their centralized approach. By relying on multi-agent reinforcement learning, we propose Mystique, a solution that learns from the load on links to establish the minimal set of active network resources. As traffic demands ebb and flow, our adaptive and self-driving solution can scale up and down and also react to failures in a fully automated, flexible, and efficient manner. Our results demonstrate that the presented solution can reduce network energy consumption while providing an adequate service level, outperforming other benchmark auto-scaling approaches

    Workload Prediction for Efficient Performance Isolation and System Reliability

    Get PDF
    In large-scaled and distributed systems, like multi-tier storage systems and cloud data centers, resource sharing among workloads brings multiple benefits while introducing many performance challenges. The key to effective workload multiplexing is accurate workload prediction. This thesis focuses on how to capture the salient characteristics of the real-world workloads to develop workload prediction methods and to drive scheduling and resource allocation policies, in order to achieve efficient and in-time resource isolation among applications. For a multi-tier storage system, high-priority user work is often multiplexed with low-priority background work. This brings the challenge of how to strike a balance between maintaining the user performance and maximizing the amount of finished background work. In this thesis, we propose two resource isolation policies based on different workload prediction methods: one is a Markovian model-based and the other is a neural networks-based. These policies aim at, via workload prediction, discovering the opportune time to schedule background work with minimum impact on user performance. Trace-driven simulations verify the efficiency of the two pro- posed resource isolation policies. The Markovian model-based policy successfully schedules the background work at the appropriate periods with small impact on the user performance. The neural networks-based policy adaptively schedules user and background work, resulting in meeting both performance requirements consistently. This thesis also proposes an accurate while efficient neural networks-based pre- diction method for data center usage series, called PRACTISE. Different from the traditional neural networks for time series prediction, PRACTISE selects the most informative features from the past observations of the time series itself. Testing on a large set of usage series in production data centers illustrates the accuracy (e.g., prediction error) and efficiency (e.g., time cost) of PRACTISE. The superiority of the usage prediction also allows a proactive resource management in the highly virtualized cloud data centers. In this thesis, we analyze on the performance tickets in the cloud data centers, and propose an active sizing algorithm, named ATM, that predicts the usage workloads and re-allocates capacity to work- loads to avoid VM performance tickets. Moreover, driven by cheap prediction of usage tails, we also present TailGuard in this thesis, which dynamically clones VMs among co-located boxes, in order to efficiently reduce the performance violations of physical boxes in cloud data centers

    Approximate Data Analytics Systems

    Get PDF
    Today, most modern online services make use of big data analytics systems to extract useful information from the raw digital data. The data normally arrives as a continuous data stream at a high speed and in huge volumes. The cost of handling this massive data can be significant. Providing interactive latency in processing the data is often impractical due to the fact that the data is growing exponentially and even faster than Moore’s law predictions. To overcome this problem, approximate computing has recently emerged as a promising solution. Approximate computing is based on the observation that many modern applications are amenable to an approximate, rather than the exact output. Unlike traditional computing, approximate computing tolerates lower accuracy to achieve lower latency by computing over a partial subset instead of the entire input data. Unfortunately, the advancements in approximate computing are primarily geared towards batch analytics and cannot provide low-latency guarantees in the context of stream processing, where new data continuously arrives as an unbounded stream. In this thesis, we design and implement approximate computing techniques for processing and interacting with high-speed and large-scale stream data to achieve low latency and efficient utilization of resources. To achieve these goals, we have designed and built the following approximate data analytics systems: • StreamApprox—a data stream analytics system for approximate computing. This system supports approximate computing for low-latency stream analytics in a transparent way and has an ability to adapt to rapid fluctuations of input data streams. In this system, we designed an online adaptive stratified reservoir sampling algorithm to produce approximate output with bounded error. • IncApprox—a data analytics system for incremental approximate computing. This system adopts approximate and incremental computing in stream processing to achieve high-throughput and low-latency with efficient resource utilization. In this system, we designed an online stratified sampling algorithm that uses self-adjusting computation to produce an incrementally updated approximate output with bounded error. • PrivApprox—a data stream analytics system for privacy-preserving and approximate computing. This system supports high utility and low-latency data analytics and preserves user’s privacy at the same time. The system is based on the combination of privacy-preserving data analytics and approximate computing. • ApproxJoin—an approximate distributed joins system. This system improves the performance of joins — critical but expensive operations in big data systems. In this system, we employed a sketching technique (Bloom filter) to avoid shuffling non-joinable data items through the network as well as proposed a novel sampling mechanism that executes during the join to obtain an unbiased representative sample of the join output. Our evaluation based on micro-benchmarks and real world case studies shows that these systems can achieve significant performance speedup compared to state-of-the-art systems by tolerating negligible accuracy loss of the analytics output. In addition, our systems allow users to systematically make a trade-off between accuracy and throughput/latency and require no/minor modifications to the existing applications
    • …
    corecore