336 research outputs found

    Estimating the weight of metric minimum spanning trees in sublinear time

    Get PDF
    In this paper we present a sublinear-time (1+ε)(1+\varepsilon)-approximation randomized algorithm to estimate the weight of the minimum spanning tree of an nn-point metric space. The running time of the algorithm is O~(n/εO(1))\widetilde{\mathcal{O}}(n/\varepsilon^{\mathcal{O}(1)}). Since the full description of an nn-point metric space is of size Θ(n2)\Theta(n^2), the complexity of our algorithm is sublinear with respect to the input size. Our algorithm is almost optimal as it is not possible to approximate in o(n)o(n) time the weight of the minimum spanning tree to within any factor. We also show that no deterministic algorithm can achieve a BB-approximation in o(n2/B3)o(n^2/B^3) time. Furthermore, it has been previously shown that no o(n2)o(n^2) algorithm exists that returns a spanning tree whose weight is within a constant times the optimum

    Distributed Approximation Algorithms for Weighted Shortest Paths

    Full text link
    A distributed network is modeled by a graph having nn nodes (processors) and diameter DD. We study the time complexity of approximating {\em weighted} (undirected) shortest paths on distributed networks with a O(logn)O(\log n) {\em bandwidth restriction} on edges (the standard synchronous \congest model). The question whether approximation algorithms help speed up the shortest paths (more precisely distance computation) was raised since at least 2004 by Elkin (SIGACT News 2004). The unweighted case of this problem is well-understood while its weighted counterpart is fundamental problem in the area of distributed approximation algorithms and remains widely open. We present new algorithms for computing both single-source shortest paths (\sssp) and all-pairs shortest paths (\apsp) in the weighted case. Our main result is an algorithm for \sssp. Previous results are the classic O(n)O(n)-time Bellman-Ford algorithm and an O~(n1/2+1/2k+D)\tilde O(n^{1/2+1/2k}+D)-time (8klog(k+1)1)(8k\lceil \log (k+1) \rceil -1)-approximation algorithm, for any integer k1k\geq 1, which follows from the result of Lenzen and Patt-Shamir (STOC 2013). (Note that Lenzen and Patt-Shamir in fact solve a harder problem, and we use O~()\tilde O(\cdot) to hide the O(\poly\log n) term.) We present an O~(n1/2D1/4+D)\tilde O(n^{1/2}D^{1/4}+D)-time (1+o(1))(1+o(1))-approximation algorithm for \sssp. This algorithm is {\em sublinear-time} as long as DD is sublinear, thus yielding a sublinear-time algorithm with almost optimal solution. When DD is small, our running time matches the lower bound of Ω~(n1/2+D)\tilde \Omega(n^{1/2}+D) by Das Sarma et al. (SICOMP 2012), which holds even when D=Θ(logn)D=\Theta(\log n), up to a \poly\log n factor.Comment: Full version of STOC 201

    Sublinear time approximation of the cost of a metric k-nearest neighbor graph

    Get PDF
    Let (X, d) be an n-point metric space. We assume that (X, d) is given in the distance oracle model, that is, X = {1, …, n} and for every pair of points x, y from X we can query their distance d(x, y) in constant time. A k-nearest neighbor (k-NN) graph for (X, d) is a directed graph G = (V, E) that has an edge to each of v's k nearest neighbors. We use cost(G) to denote the sum of edge weights of G. In this paper, we study the problem of approximating cost(G) in sublinear time, when we are given oracle access to the metric space (X, d) that defines G. Our goal is to develop an algorithm that solves this problem faster than the time required to compute G. We first present an algorithm that in Õ∊(n2/k) time with probability at least approximates cost(G) to within a factor of 1 + ∊. Next, we present a more elaborate sublinear algorithm that in time Õϵ(min{nk3/2, n2/k}) computes an estimate of cost(G) that satisfies with probability at least where mst(X) denotes the cost of the minimum spanning tree of (X, d). Further, we complement these results with near matching lower bounds. We show that any algorithm that for a given metric space (X, d) of size n, with probability at least estimates cost(G) to within a 1 + ∊ factor requires Ω(n2/k) time. Similarly, any algorithm that with probability at least estimates cost(G) to within an additive error term ϵ · (mst(X) + cost(X)) requires Ωϵ(min{nk3/2, n2/k}) time

    05291 Abstracts Collection -- Sublinear Algorithms

    Get PDF
    From 17.07.05 to 22.07.05, the Dagstuhl Seminar 05291 ``Sublinear Algorithms\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Parallel Algorithms for Geometric Graph Problems

    Full text link
    We give algorithms for geometric graph problems in the modern parallel models inspired by MapReduce. For example, for the Minimum Spanning Tree (MST) problem over a set of points in the two-dimensional space, our algorithm computes a (1+ϵ)(1+\epsilon)-approximate MST. Our algorithms work in a constant number of rounds of communication, while using total space and communication proportional to the size of the data (linear space and near linear time algorithms). In contrast, for general graphs, achieving the same result for MST (or even connectivity) remains a challenging open problem, despite drawing significant attention in recent years. We develop a general algorithmic framework that, besides MST, also applies to Earth-Mover Distance (EMD) and the transportation cost problem. Our algorithmic framework has implications beyond the MapReduce model. For example it yields a new algorithm for computing EMD cost in the plane in near-linear time, n1+oϵ(1)n^{1+o_\epsilon(1)}. We note that while recently Sharathkumar and Agarwal developed a near-linear time algorithm for (1+ϵ)(1+\epsilon)-approximating EMD, our algorithm is fundamentally different, and, for example, also solves the transportation (cost) problem, raised as an open question in their work. Furthermore, our algorithm immediately gives a (1+ϵ)(1+\epsilon)-approximation algorithm with nδn^{\delta} space in the streaming-with-sorting model with 1/δO(1)1/\delta^{O(1)} passes. As such, it is tempting to conjecture that the parallel models may also constitute a concrete playground in the quest for efficient algorithms for EMD (and other similar problems) in the vanilla streaming model, a well-known open problem
    corecore