2,937 research outputs found

    Computational methods for finding long simple cycles in complex networks

    Get PDF
    © 2017 Elsevier B.V. Detection of long simple cycles in real-world complex networks finds many applications in layout algorithms, information flow modelling, as well as in bioinformatics. In this paper, we propose two computational methods for finding long cycles in real-world networks. The first method is an exact approach based on our own integer linear programming formulation of the problem and a data mining pipeline. This pipeline ensures that the problem is solved as a sequence of integer linear programs. The second method is a multi-start local search heuristic, which combines an initial construction of a long cycle using depth-first search with four different perturbation operators. Our experimental results are presented for social network samples, graphs studied in the network science field, graphs from DIMACS series, and protein-protein interaction networks. These results show that our formulation leads to a significantly more efficient exact approach to solve the problem than a previous formulation. For 14 out of 22 networks, we have found the optimal solutions. The potential of heuristics in this problem is also demonstrated, especially in the context of large-scale problem instances

    GraphCombEx: A Software Tool for Exploration of Combinatorial Optimisation Properties of Large Graphs

    Full text link
    We present a prototype of a software tool for exploration of multiple combinatorial optimisation problems in large real-world and synthetic complex networks. Our tool, called GraphCombEx (an acronym of Graph Combinatorial Explorer), provides a unified framework for scalable computation and presentation of high-quality suboptimal solutions and bounds for a number of widely studied combinatorial optimisation problems. Efficient representation and applicability to large-scale graphs and complex networks are particularly considered in its design. The problems currently supported include maximum clique, graph colouring, maximum independent set, minimum vertex clique covering, minimum dominating set, as well as the longest simple cycle problem. Suboptimal solutions and intervals for optimal objective values are estimated using scalable heuristics. The tool is designed with extensibility in mind, with the view of further problems and both new fast and high-performance heuristics to be added in the future. GraphCombEx has already been successfully used as a support tool in a number of recent research studies using combinatorial optimisation to analyse complex networks, indicating its promise as a research software tool

    Approximating Longest Directed Paths and Cycles

    Get PDF
    We investigate the hardness of approximating the longest path and the longest cycle in directed graphs on n vertices. We show that neither of these two problems can be polynomial time approximated within n1-ε for any ε \u3e 0 unless P = NP. In particular, the result holds for digraphs of constant bounded outdegree that contain a Hamiltonian cycle. Assuming the stronger complexity conjecture that Satisfiability cannot be solved in subexponential time, we show that there is no polynomial time algorithm that finds a directed path of length Ω(f(n) log2n), or a directed cycle of length Ω(f(n) log n), for any nondecreasing, polynomial time computable function f in Ω(1). With a recent algorithm for undirected graphs by Gabow, this shows that long paths and cycles are harder to find in directed graphs than in undirected graphs. We also find a directed path of length Ω(log2 n/ log log n) in Hamiltonian digraphs with bounded outdegree. With our hardness results, this shows that long directed cycles are harder to find than a long directed paths. Furthermore, we present a simple polynomial time algorithm that finds paths of length Ω(n) in directed expanders of constant bounded outdegree

    Approximating Longest Path

    Get PDF
    We investigate the computational hardness of approximating the longest path and the longest cycle in undirected and directed graphs on n vertices. We show that * in any expander graph, we can find (n) long paths in polynomial time. * there is an algorithm that finds a path of length (log2 L/ log log L) in any undirected graph having a path of length L, in polynomial time. * there is an algorithm that finds a path of length (log2 n/ log log n) in any Hamiltonian directed graph of constant bounded outdegree, in polynomial time. * there cannot be an algorithm finding paths of length (n ) for any constant > 0 in a Hamiltonian directed graph of bounded outdegree in polynomial time, unless P = NP. * there cannot be an algorithm finding paths of length (log2+ n), or cycles of length (log1+ n) for any constant > 0 in a Hamiltonian directed graph of constant bounded outdegree in polynomial time, unless 3-Sat can be solved in subexponential time

    On the Approximability of Digraph Ordering

    Full text link
    Given an n-vertex digraph D = (V, A) the Max-k-Ordering problem is to compute a labeling :V[k]\ell : V \to [k] maximizing the number of forward edges, i.e. edges (u,v) such that \ell(u) < \ell(v). For different values of k, this reduces to Maximum Acyclic Subgraph (k=n), and Max-Dicut (k=2). This work studies the approximability of Max-k-Ordering and its generalizations, motivated by their applications to job scheduling with soft precedence constraints. We give an LP rounding based 2-approximation algorithm for Max-k-Ordering for any k={2,..., n}, improving on the known 2k/(k-1)-approximation obtained via random assignment. The tightness of this rounding is shown by proving that for any k={2,..., n} and constant ε>0\varepsilon > 0, Max-k-Ordering has an LP integrality gap of 2 - ε\varepsilon for nΩ(1/loglogk)n^{\Omega\left(1/\log\log k\right)} rounds of the Sherali-Adams hierarchy. A further generalization of Max-k-Ordering is the restricted maximum acyclic subgraph problem or RMAS, where each vertex v has a finite set of allowable labels SvZ+S_v \subseteq \mathbb{Z}^+. We prove an LP rounding based 42/(2+1)2.3444\sqrt{2}/(\sqrt{2}+1) \approx 2.344 approximation for it, improving on the 222.8282\sqrt{2} \approx 2.828 approximation recently given by Grandoni et al. (Information Processing Letters, Vol. 115(2), Pages 182-185, 2015). In fact, our approximation algorithm also works for a general version where the objective counts the edges which go forward by at least a positive offset specific to each edge. The minimization formulation of digraph ordering is DAG edge deletion or DED(k), which requires deleting the minimum number of edges from an n-vertex directed acyclic graph (DAG) to remove all paths of length k. We show that both, the LP relaxation and a local ratio approach for DED(k) yield k-approximation for any k[n]k\in [n].Comment: 21 pages, Conference version to appear in ESA 201

    A Streaming Algorithm for the Undirected Longest Path Problem

    Get PDF
    We present the first streaming algorithm for the longest path problem in undirected graphs. The input graph is given as a stream of edges and RAM is limited to only a linear number of edges at a time (linear in the number of vertices n). We prove a per-edge processing time of O(n), where a naive solution would have required Omega(n^2). Moreover, we give a concrete linear upper bound on the number of bits of RAM that are required. On a set of graphs with various structure, we experimentally compare our algorithm with three leading RAM algorithms: Warnsdorf (1823), Pohl-Warnsdorf (1967), and Pongrasz (2012). Although conducting only a small constant number of passes over the input, our algorithm delivers competitive results: with the exception of preferential attachment graphs, we deliver at least 71% of the solution of the best RAM algorithm. The same minimum relative performance of 71% is observed over all graph classes after removing the 10% worst cases. This comparison has strong meaning, since for each instance class there is one algorithm that on average delivers at least 84% of a Hamilton path. In some cases we deliver even better results than any of the RAM algorithms
    corecore