298 research outputs found

    Cluster Before You Hallucinate: Approximating Node-Capacitated Network Design and Energy Efficient Routing

    Full text link
    We consider circuit routing with an objective of minimizing energy, in a network of routers that are speed scalable and that may be shutdown when idle. We consider both multicast routing and unicast routing. It is known that this energy minimization problem can be reduced to a capacitated flow network design problem, where vertices have a common capacity but arbitrary costs, and the goal is to choose a minimum cost collection of vertices whose induced subgraph will support the specified flow requirements. For the multicast (single-sink) capacitated design problem we give a polynomial-time algorithm that is O(log^3n)-approximate with O(log^4 n) congestion. This translates back to a O(log ^(4{\alpha}+3) n)-approximation for the multicast energy-minimization routing problem, where {\alpha} is the polynomial exponent in the dynamic power used by a router. For the unicast (multicommodity) capacitated design problem we give a polynomial-time algorithm that is O(log^5 n)-approximate with O(log^12 n) congestion, which translates back to a O(log^(12{\alpha}+5) n)-approximation for the unicast energy-minimization routing problem.Comment: 22 pages (full version of STOC 2014 paper

    Approximating k-Forest with Resource Augmentation: A Primal-Dual Approach

    Full text link
    In this paper, we study the kk-forest problem in the model of resource augmentation. In the kk-forest problem, given an edge-weighted graph G(V,E)G(V,E), a parameter kk, and a set of mm demand pairs V×V\subseteq V \times V, the objective is to construct a minimum-cost subgraph that connects at least kk demands. The problem is hard to approximate---the best-known approximation ratio is O(min{n,k})O(\min\{\sqrt{n}, \sqrt{k}\}). Furthermore, kk-forest is as hard to approximate as the notoriously-hard densest kk-subgraph problem. While the kk-forest problem is hard to approximate in the worst-case, we show that with the use of resource augmentation, we can efficiently approximate it up to a constant factor. First, we restate the problem in terms of the number of demands that are {\em not} connected. In particular, the objective of the kk-forest problem can be viewed as to remove at most mkm-k demands and find a minimum-cost subgraph that connects the remaining demands. We use this perspective of the problem to explain the performance of our algorithm (in terms of the augmentation) in a more intuitive way. Specifically, we present a polynomial-time algorithm for the kk-forest problem that, for every ϵ>0\epsilon>0, removes at most mkm-k demands and has cost no more than O(1/ϵ2)O(1/\epsilon^{2}) times the cost of an optimal algorithm that removes at most (1ϵ)(mk)(1-\epsilon)(m-k) demands

    Approximating multi-objective time-dependent optimization problems

    Get PDF
    In many practical situations, decisions are multi-objective in nature. Furthermore, costs and profits are time-dependent, i.e. depending upon the time a decision is taken, different costs and profits are incurred. In this paper, we propose a generic approach to deal with multi-objective time-dependent optimization problems (MOTDP). The aim is to determine the set of Pareto solutions that capture the interactions between the different objectives. Due, to the complexity of MOTDP, an efficient approximation based on dynamic programming is developed. The approximation has a provable worst case performance guarantee. Even though the approximate Pareto set consists of less solutions, it represents a good coverage of the true set of Pareto solutions. Numerical results are presented showing the value of the approximation

    Stochastic Vehicle Routing with Recourse

    Full text link
    We study the classic Vehicle Routing Problem in the setting of stochastic optimization with recourse. StochVRP is a two-stage optimization problem, where demand is satisfied using two routes: fixed and recourse. The fixed route is computed using only a demand distribution. Then after observing the demand instantiations, a recourse route is computed -- but costs here become more expensive by a factor lambda. We present an O(log^2 n log(n lambda))-approximation algorithm for this stochastic routing problem, under arbitrary distributions. The main idea in this result is relating StochVRP to a special case of submodular orienteering, called knapsack rank-function orienteering. We also give a better approximation ratio for knapsack rank-function orienteering than what follows from prior work. Finally, we provide a Unique Games Conjecture based omega(1) hardness of approximation for StochVRP, even on star-like metrics on which our algorithm achieves a logarithmic approximation.Comment: 20 Pages, 1 figure Revision corrects the statement and proof of Theorem 1.

    Shortest Path versus Multi-Hub Routing in Networks with Uncertain Demand

    Full text link
    We study a class of robust network design problems motivated by the need to scale core networks to meet increasingly dynamic capacity demands. Past work has focused on designing the network to support all hose matrices (all matrices not exceeding marginal bounds at the nodes). This model may be too conservative if additional information on traffic patterns is available. Another extreme is the fixed demand model, where one designs the network to support peak point-to-point demands. We introduce a capped hose model to explore a broader range of traffic matrices which includes the above two as special cases. It is known that optimal designs for the hose model are always determined by single-hub routing, and for the fixed- demand model are based on shortest-path routing. We shed light on the wider space of capped hose matrices in order to see which traffic models are more shortest path-like as opposed to hub-like. To address the space in between, we use hierarchical multi-hub routing templates, a generalization of hub and tree routing. In particular, we show that by adding peak capacities into the hose model, the single-hub tree-routing template is no longer cost-effective. This initiates the study of a class of robust network design (RND) problems restricted to these templates. Our empirical analysis is based on a heuristic for this new hierarchical RND problem. We also propose that it is possible to define a routing indicator that accounts for the strengths of the marginals and peak demands and use this information to choose the appropriate routing template. We benchmark our approach against other well-known routing templates, using representative carrier networks and a variety of different capped hose traffic demands, parameterized by the relative importance of their marginals as opposed to their point-to-point peak demands
    corecore