2,718 research outputs found

    Monotone properties of random geometric graphs have sharp thresholds

    Full text link
    Random geometric graphs result from taking nn uniformly distributed points in the unit cube, [0,1]d[0,1]^d, and connecting two points if their Euclidean distance is at most rr, for some prescribed rr. We show that monotone properties for this class of graphs have sharp thresholds by reducing the problem to bounding the bottleneck matching on two sets of nn points distributed uniformly in [0,1]d[0,1]^d. We present upper bounds on the threshold width, and show that our bound is sharp for d=1d=1 and at most a sublogarithmic factor away for d2d\ge2. Interestingly, the threshold width is much sharper for random geometric graphs than for Bernoulli random graphs. Further, a random geometric graph is shown to be a subgraph, with high probability, of another independently drawn random geometric graph with a slightly larger radius; this property is shown to have no analogue for Bernoulli random graphs.Comment: Published at http://dx.doi.org/10.1214/105051605000000575 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Maximum Scatter TSP in Doubling Metrics

    Full text link
    We study the problem of finding a tour of nn points in which every edge is long. More precisely, we wish to find a tour that visits every point exactly once, maximizing the length of the shortest edge in the tour. The problem is known as Maximum Scatter TSP, and was introduced by Arkin et al. (SODA 1997), motivated by applications in manufacturing and medical imaging. Arkin et al. gave a 0.50.5-approximation for the metric version of the problem and showed that this is the best possible ratio achievable in polynomial time (assuming PNPP \neq NP). Arkin et al. raised the question of whether a better approximation ratio can be obtained in the Euclidean plane. We answer this question in the affirmative in a more general setting, by giving a (1ϵ)(1-\epsilon)-approximation algorithm for dd-dimensional doubling metrics, with running time O~(n3+2O(KlogK))\tilde{O}\big(n^3 + 2^{O(K \log K)}\big), where K(13ϵ)dK \leq \left( \frac{13}{\epsilon} \right)^d. As a corollary we obtain (i) an efficient polynomial-time approximation scheme (EPTAS) for all constant dimensions dd, (ii) a polynomial-time approximation scheme (PTAS) for dimension d=loglogn/cd = \log\log{n}/c, for a sufficiently large constant cc, and (iii) a PTAS for constant dd and ϵ=Ω(1/loglogn)\epsilon = \Omega(1/\log\log{n}). Furthermore, we show the dependence on dd in our approximation scheme to be essentially optimal, unless Satisfiability can be solved in subexponential time

    Mismatch and resolution in compressive imaging

    Full text link
    Highly coherent sensing matrices arise in discretization of continuum problems such as radar and medical imaging when the grid spacing is below the Rayleigh threshold as well as in using highly coherent, redundant dictionaries as sparsifying operators. Algorithms (BOMP, BLOOMP) based on techniques of band exclusion and local optimization are proposed to enhance Orthogonal Matching Pursuit (OMP) and deal with such coherent sensing matrices. BOMP and BLOOMP have provably performance guarantee of reconstructing sparse, widely separated objects {\em independent} of the redundancy and have a sparsity constraint and computational cost similar to OMP's. Numerical study demonstrates the effectiveness of BLOOMP for compressed sensing with highly coherent, redundant sensing matrices.Comment: Figure 5 revise

    Sketching Persistence Diagrams

    Get PDF
    Given a persistence diagram with n points, we give an algorithm that produces a sequence of n persistence diagrams converging in bottleneck distance to the input diagram, the ith of which has i distinct (weighted) points and is a 2-approximation to the closest persistence diagram with that many distinct points. For each approximation, we precompute the optimal matching between the ith and the (i+1)st. Perhaps surprisingly, the entire sequence of diagrams as well as the sequence of matchings can be represented in O(n) space. The main approach is to use a variation of the greedy permutation of the persistence diagram to give good Hausdorff approximations and assign weights to these subsets. We give a new algorithm to efficiently compute this permutation, despite the high implicit dimension of points in a persistence diagram due to the effect of the diagonal. The sketches are also structured to permit fast (linear time) approximations to the Hausdorff distance between diagrams - a lower bound on the bottleneck distance. For approximating the bottleneck distance, sketches can also be used to compute a linear-size neighborhood graph directly, obviating the need for geometric data structures used in state-of-the-art methods for bottleneck computation

    matching, interpolation, and approximation ; a survey

    Get PDF
    In this survey we consider geometric techniques which have been used to measure the similarity or distance between shapes, as well as to approximate shapes, or interpolate between shapes. Shape is a modality which plays a key role in many disciplines, ranging from computer vision to molecular biology. We focus on algorithmic techniques based on computational geometry that have been developed for shape matching, simplification, and morphing

    Compression for Smooth Shape Analysis

    Full text link
    Most 3D shape analysis methods use triangular meshes to discretize both the shape and functions on it as piecewise linear functions. With this representation, shape analysis requires fine meshes to represent smooth shapes and geometric operators like normals, curvatures, or Laplace-Beltrami eigenfunctions at large computational and memory costs. We avoid this bottleneck with a compression technique that represents a smooth shape as subdivision surfaces and exploits the subdivision scheme to parametrize smooth functions on that shape with a few control parameters. This compression does not affect the accuracy of the Laplace-Beltrami operator and its eigenfunctions and allow us to compute shape descriptors and shape matchings at an accuracy comparable to triangular meshes but a fraction of the computational cost. Our framework can also compress surfaces represented by point clouds to do shape analysis of 3D scanning data
    corecore