2,135 research outputs found

    The Preemptive Resource Allocation Problem

    Get PDF
    We revisit a classical scheduling model to incorporate modern trends in data center networks and cloud services. Addressing some key challenges in the allocation of shared resources to user requests (jobs) in such settings, we consider the following variants of the classic resource allocation problem (RAP). The input to our problems is a set J of jobs and a set M of homogeneous hosts, each has an available amount of some resource. A job is associated with a release time, a due date, a weight and a given length, as well as its resource requirement. A feasible schedule is an allocation of the resource to a subset of the jobs, satisfying the job release times/due dates as well as the resource constraints. A crucial distinction between classic RAP and our problems is that we allow preemption and migration of jobs, motivated by virtualization techniques. We consider two natural objectives: throughput maximization (MaxT), which seeks a maximum weight subset of the jobs that can be feasibly scheduled on the hosts in M, and resource minimization (MinR), that is finding the minimum number of (homogeneous) hosts needed to feasibly schedule all jobs. Both problems are known to be NP-hard. We first present an Omega(1)-approximation algorithm for MaxT instances where time-windows form a laminar family of intervals. We then extend the algorithm to handle instances with arbitrary time-windows, assuming there is sufficient slack for each job to be completed. For MinR we study a more general setting with d resources and derive an O(log d)-approximation for any fixed d >= 1, under the assumption that time-windows are not too small. This assumption can be removed leading to a slightly worse ratio of O(log d log^* T), where T is the maximum due date of any job

    Discovering private trajectories using background information

    Get PDF
    Trajectories are spatio-temporal traces of moving objects which contain valuable information to be harvested by spatio-temporal data mining techniques. Applications like city traffic planning, identification of evacuation routes, trend detection, and many more can benefit from trajectory mining. However, the trajectories of individuals often contain private and sensitive information, so anyone who possess trajectory data must take special care when disclosing this data. Removing identifiers from trajectories before the release is not effective against linkage type attacks, and rich sources of background information make it even worse. An alternative is to apply transformation techniques to map the given set of trajectories into another set where the distances are preserved. This way, the actual trajectories are not released, but the distance information can still be used for data mining techniques such as clustering. In this paper, we show that an unknown private trajectory can be reconstructed using the available background information together with the mutual distances released for data mining purposes. The background knowledge is in the form of known trajectories and extra information such as the speed limit. We provide analytical results which bound the number of the known trajectories needed to reconstruct private trajectories. Experiments performed on real trajectory data sets show that the number of known samples is surprisingly smaller than the actual theoretical bounds

    (M)ad to see me?: Intelligent Advertisement Placement: Balancing User Annoyance and Advertising Effectiveness

    Get PDF
    Advertising is an unavoidable albeit a frustrating part of mobile interactions. Due to limited form factor, mobile advertisements often resort to intrusive strategies where they temporarily block the user's view in an attempt to increase effectiveness and force the user's attention. While such strategies contribute to advertising awareness and effectiveness, they do so at the cost of degrading the user's overall experience and can lead to frustration and annoyance. In this paper, we contribute by developing Perceptive Ads as an intelligent advertisement placement strategy that minimizes disruptions caused by ads while preserving their effectiveness. Our work is the first to simultaneously consider the needs of users, app developers, and advertisers. Ensuring the needs of all stakeholders are taken into account is essential for the adoption of advertising strategies as users (and indirectly developers) would reject strategies that are disruptive but effective, while advertisers would reject strategies that are non-disruptive but inefficient. We demonstrate the effectiveness of our technique through a user study with N = 16 participants and two representative examples of mobile apps that commonly integrate advertisements (a game and a news app). Results from the study demonstrate that our approach can improve perception towards advertisements by 43.75% without affecting application interactivity while at the same time increasing advertisement effectiveness by 37.5% compared to a state-of-the-art baseline.Peer reviewe

    A comparative study of the AHP and TOPSIS methods for implementing load shedding scheme in a pulp mill system

    Get PDF
    The advancement of technology had encouraged mankind to design and create useful equipment and devices. These equipment enable users to fully utilize them in various applications. Pulp mill is one of the heavy industries that consumes large amount of electricity in its production. Due to this, any malfunction of the equipment might cause mass losses to the company. In particular, the breakdown of the generator would cause other generators to be overloaded. In the meantime, the subsequence loads will be shed until the generators are sufficient to provide the power to other loads. Once the fault had been fixed, the load shedding scheme can be deactivated. Thus, load shedding scheme is the best way in handling such condition. Selected load will be shed under this scheme in order to protect the generators from being damaged. Multi Criteria Decision Making (MCDM) can be applied in determination of the load shedding scheme in the electric power system. In this thesis two methods which are Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) were introduced and applied. From this thesis, a series of analyses are conducted and the results are determined. Among these two methods which are AHP and TOPSIS, the results shown that TOPSIS is the best Multi criteria Decision Making (MCDM) for load shedding scheme in the pulp mill system. TOPSIS is the most effective solution because of the highest percentage effectiveness of load shedding between these two methods. The results of the AHP and TOPSIS analysis to the pulp mill system are very promising
    corecore