118 research outputs found

    Approximating survivable networks with β-metric costs

    Get PDF
    AbstractThe Survivable Network Design (SND) problem seeks a minimum-cost subgraph that satisfies prescribed node-connectivity requirements. We consider SND on both directed and undirected complete graphs with β-metric costs when c(xz)⩽β[c(xy)+c(yz)] for all x,y,z∈V, which varies from uniform costs (β=1/2) to metric costs (β=1).For the k-Connected Subgraph (k-CS) problem our ratios are: 1+2βk(1−β)−12k−1 for undirected graphs, and 1+4β3k(1−3β2)−12k−1 for directed graphs and 12⩽β<13. For undirected graphs this improves the ratios β1−β of Böckenhauer et al. (2008) [3] and 2+βkn of Kortsarz and Nutov (2003) [11] for all k⩾4 and 12+3k−22(4k2−7k+2)⩽β⩽k2(k+1)2−2. We also show that SND admits the ratios 2β1−β for undirected graphs, and 4β31−3β2 for directed graphs with 1/2⩽β<1/3. For two important particular cases of SND, so-called Subset k-CS and Rooted SND, our ratios are 2β31−3β2 for directed graphs and β1−β for subset k-CS on undirected graphs

    Approximating subset kk-connectivity problems

    Get PDF
    A subset TVT \subseteq V of terminals is kk-connected to a root ss in a directed/undirected graph JJ if JJ has kk internally-disjoint vsvs-paths for every vTv \in T; TT is kk-connected in JJ if TT is kk-connected to every sTs \in T. We consider the {\sf Subset kk-Connectivity Augmentation} problem: given a graph G=(V,E)G=(V,E) with edge/node-costs, node subset TVT \subseteq V, and a subgraph J=(V,EJ)J=(V,E_J) of GG such that TT is kk-connected in JJ, find a minimum-cost augmenting edge-set FEEJF \subseteq E \setminus E_J such that TT is (k+1)(k+1)-connected in JFJ \cup F. The problem admits trivial ratio O(T2)O(|T|^2). We consider the case T>k|T|>k and prove that for directed/undirected graphs and edge/node-costs, a ρ\rho-approximation for {\sf Rooted Subset kk-Connectivity Augmentation} implies the following ratios for {\sf Subset kk-Connectivity Augmentation}: (i) b(ρ+k)+(3TTk)2H(3TTk)b(\rho+k) + {(\frac{3|T|}{|T|-k})}^2 H(\frac{3|T|}{|T|-k}); (ii) ρO(TTklogk)\rho \cdot O(\frac{|T|}{|T|-k} \log k), where b=1 for undirected graphs and b=2 for directed graphs, and H(k)H(k) is the kkth harmonic number. The best known values of ρ\rho on undirected graphs are min{T,O(k)}\min\{|T|,O(k)\} for edge-costs and min{T,O(klogT)}\min\{|T|,O(k \log |T|)\} for node-costs; for directed graphs ρ=T\rho=|T| for both versions. Our results imply that unless k=To(T)k=|T|-o(|T|), {\sf Subset kk-Connectivity Augmentation} admits the same ratios as the best known ones for the rooted version. This improves the ratios in \cite{N-focs,L}

    Improved Algorithm for Degree Bounded Survivable Network Design Problem

    Full text link
    We consider the Degree-Bounded Survivable Network Design Problem: the objective is to find a minimum cost subgraph satisfying the given connectivity requirements as well as the degree bounds on the vertices. If we denote the upper bound on the degree of a vertex v by b(v), then we present an algorithm that finds a solution whose cost is at most twice the cost of the optimal solution while the degree of a degree constrained vertex v is at most 2b(v) + 2. This improves upon the results of Lau and Singh and that of Lau, Naor, Salavatipour and Singh

    Covering problems in edge- and node-weighted graphs

    Full text link
    This paper discusses the graph covering problem in which a set of edges in an edge- and node-weighted graph is chosen to satisfy some covering constraints while minimizing the sum of the weights. In this problem, because of the large integrality gap of a natural linear programming (LP) relaxation, LP rounding algorithms based on the relaxation yield poor performance. Here we propose a stronger LP relaxation for the graph covering problem. The proposed relaxation is applied to designing primal-dual algorithms for two fundamental graph covering problems: the prize-collecting edge dominating set problem and the multicut problem in trees. Our algorithms are an exact polynomial-time algorithm for the former problem, and a 2-approximation algorithm for the latter problem, respectively. These results match the currently known best results for purely edge-weighted graphs.Comment: To appear in SWAT 201

    O(log2k/loglogk)O(\log^2k/\log\log{k})-Approximation Algorithm for Directed Steiner Tree: A Tight Quasi-Polynomial-Time Algorithm

    Get PDF
    In the Directed Steiner Tree (DST) problem we are given an nn-vertex directed edge-weighted graph, a root rr, and a collection of kk terminal nodes. Our goal is to find a minimum-cost arborescence that contains a directed path from rr to every terminal. We present an O(log2k/loglogk)O(\log^2 k/\log\log{k})-approximation algorithm for DST that runs in quasi-polynomial-time. By adjusting the parameters in the hardness result of Halperin and Krauthgamer, we show the matching lower bound of Ω(log2k/loglogk)\Omega(\log^2{k}/\log\log{k}) for the class of quasi-polynomial-time algorithms. This is the first improvement on the DST problem since the classical quasi-polynomial-time O(log3k)O(\log^3 k) approximation algorithm by Charikar et al. (The paper erroneously claims an O(log2k)O(\log^2k) approximation due to a mistake in prior work.) Our approach is based on two main ingredients. First, we derive an approximation preserving reduction to the Label-Consistent Subtree (LCST) problem. The LCST instance has quasi-polynomial size and logarithmic height. We remark that, in contrast, Zelikovsky's heigh-reduction theorem used in all prior work on DST achieves a reduction to a tree instance of the related Group Steiner Tree (GST) problem of similar height, however losing a logarithmic factor in the approximation ratio. Our second ingredient is an LP-rounding algorithm to approximately solve LCST instances, which is inspired by the framework developed by Rothvo{\ss}. We consider a Sherali-Adams lifting of a proper LP relaxation of LCST. Our rounding algorithm proceeds level by level from the root to the leaves, rounding and conditioning each time on a proper subset of label variables. A small enough (namely, polylogarithmic) number of Sherali-Adams lifting levels is sufficient to condition up to the leaves

    Approximability of Capacitated Network Design

    Get PDF
    In the capacitated survivable network design problem (Cap- SNDP), we are given an undirected multi-graph where each edge has a capacity and a cost. The goal is to find a minimum cost subset of edges that satisfies a given set of pairwise minimum-cut requirements. Unlike its classical special case of SNDP when all capacities are unit, the approximability of Cap-SNDP is not well understood; even in very restricted settings no known algorithm achieves a o(m) approximation, where m is the number of edges in the graph. In this paper, we obtain several new results and insights into the approximability of Cap-SNDP. We give an O(log n) approximation for a special case of Cap-SNDP where the global minimum cut is required to be at least R, by rounding the natural cut-based LP relaxation strengthened with valid knapsackcover inequalities. We then show that as we move away from global connectivity, the single pair case (that is, when only one pair (s, t) has positive connectivity requirement) captures much of the difficulty of Cap-SNDP: even strengthened with KC inequalities, the LP has an Ω(n) integrality gap. Furthermore, in directed graphs, we show that single pair Cap-SNDP is 2log1−3 n-hard to approximate for any fixed constant δ \u3e 0. We also consider a variant of the Cap-SNDP in which multiple copies of an edge can be bought: we give an O(log k) approximation for this case, where k is the number of vertex pairs with non-zero connectivity requirement. This improves upon the previously known O(min{k, log Rmax})-approximation for this problem when the largest minimumcut requirement, namely Rmax, is large. On the other hand, we observe that the multiple copy version of Cap-SNDP is Ω(log log n)-hard to approximate even for the single-source version of the problem

    Algorithms and complexity analyses for some combinational optimization problems

    Get PDF
    The main focus of this dissertation is on classical combinatorial optimization problems in two important areas: scheduling and network design. In the area of scheduling, the main interest is in problems in the master-slave model. In this model, each machine is either a master machine or a slave machine. Each job is associated with a preprocessing task, a slave task and a postprocessing task that must be executed in this order. Each slave task has a dedicated slave machine. All the preprocessing and postprocessing tasks share a single master machine or the same set of master machines. A job may also have an arbitrary release time before which the preprocessing task is not available to be processed. The main objective in this dissertation is to minimize the total completion time or the makespan. Both the complexity and algorithmic issues of these problems are considered. It is shown that the problem of minimizing the total completion time is strongly NP-hard even under severe constraints. Various efficient algorithms are designed to minimize the total completion time under various scenarios. In the area of network design, the survivable network design problems are studied first. The input for this problem is an undirected graph G = (V, E), a non-negative cost for each edge, and a nonnegative connectivity requirement ruv for every (unordered) pair of vertices &ruv. The goal is to find a minimum-cost subgraph in which each pair of vertices u,v is joined by at least ruv edge (vertex)-disjoint paths. A Polynomial Time Approximation Scheme (PTAS) is designed for the problem when the graph is Euclidean and the connectivity requirement of any point is at most 2. PTASs or Quasi-PTASs are also designed for 2-edge-connectivity problem and biconnectivity problem and their variations in unweighted or weighted planar graphs. Next, the problem of constructing geometric fault-tolerant spanners with low cost and bounded maximum degree is considered. The first result shows that there is a greedy algorithm which constructs fault-tolerant spanners having asymptotically optimal bounds for both the maximum degree and the total cost at the same time. Then an efficient algorithm is developed which finds fault-tolerant spanners with asymptotically optimal bound for the maximum degree and almost optimal bound for the total cost
    corecore