130 research outputs found

    The two-echelon capacitated vehicle routing problem: models and math-based heuristics

    Get PDF
    Multiechelon distribution systems are quite common in supply-chain and logistics. They are used by public administrations in their transportation and traffic planning strategies, as well as by companies, to model own distribution systems. In the literature, most of the studies address issues relating to the movement of flows throughout the system from their origins to their final destinations. Another recent trend is to focus on the management of the vehicle fleets required to provide transportation among different echelons. The aim of this paper is twofold. First, it introduces the family of two-echelon vehicle routing problems (VRPs), a term that broadly covers such settings, where the delivery from one or more depots to customers is managed by routing and consolidating freight through intermediate depots. Second, it considers in detail the basic version of two-echelon VRPs, the two-echelon capacitated VRP, which is an extension of the classical VRP in which the delivery is compulsorily delivered through intermediate depots, named satellites. A mathematical model for two-echelon capacitated VRP, some valid inequalities, and two math-heuristics based on the model are presented. Computational results of up to 50 customers and four satellites show the effectiveness of the methods developed

    Building Networks in the Face of Uncertainty

    Get PDF
    The subject of this thesis is to study approximation algorithms for some network design problems in face of uncertainty. We consider two widely studied models of handling uncertainties - Robust Optimization and Stochastic Optimization. We study a robust version of the well studied Uncapacitated Facility Location Problem (UFLP). In this version, once the set of facilities to be opened is decided, an adversary may close at most β facilities. The clients must then be assigned to the remaining open facilities. The performance of a solution is measured by the worst possible set of facilities that the adversary may close. We introduce a novel LP for the problem, and provide an LP rounding algorithm when all facilities have same opening costs. We also study the 2-stage Stochastic version of the Steiner Tree Problem. In this version, the set of terminals to be covered is not known in advance. Instead, a probability distribution over the possible sets of terminals is known. One is allowed to build a partial solution in the first stage a low cost, and when the exact scenario to be covered becomes known in the second stage, one is allowed to extend the solution by building a recourse network, albeit at higher cost. The aim is to construct a solution of low cost in expectation. We provide an LP rounding algorithm for this problem that beats the current best known LP rounding based approximation algorithm

    Randomized approximation algorithms : facility location, phylogenetic networks, Nash equilibria

    Get PDF
    Despite a great effort, researchers are unable to find efficient algorithms for a number of natural computational problems. Typically, it is possible to emphasize the hardness of such problems by proving that they are at least as hard as a number of other problems. In the language of computational complexity it means proving that the problem is complete for a certain class of problems. For optimization problems, we may consider to relax the requirement of the outcome to be optimal and accept an approximate (i.e., close to optimal) solution. For many of the problems that are hard to solve optimally, it is actually possible to efficiently find close to optimal solutions. In this thesis, we study algorithms for computing such approximate solutions

    Co-location synergies : specialized versus diverse logistics concentration areas

    Get PDF
    Purpose: The purpose of this paper is to contribute to the understanding of spatial concentration of logistics firms by empirically analyzing synergies through co-location and investigating whether co-location of logistics establishments in specialized logistics concentration areas results in benefits compared to co-location in diverse logistics concentration areas. Methodology: A survey among managers of 128 logistics establishments located in logistics concentration areas was used to test for differences between synergies through co-location on specialized versus diverse logistics parks. Findings: The findings show that logistics firms co-located on fresh logistics parks more often share knowledge, combine transport and storage capacity, and trade products last minute than other co-located logistics firms do. Research implications: This research shows that there are synergies through co-location of logistics activities on specialized logistics parks. Managers of logistics companies may need to take these benefits into account in location decisions, academics in facility location models, and policy makers in spatial planning. Originality/value: Although anecdotic evidence suggests that co-location of logistics activities can bring several benefits to the co-located logistics companies and hence, can be important to incorporate in the location decisions of these companies, these benefits are not (much) empirically researched before. This paper analyzes synergies through co-location of logistics establishments on specialized and diverse logistics parks
    corecore