2,155 research outputs found

    A Practical Type Analysis for Verification of Modular Prolog Programs

    Get PDF
    Regular types are a powerful tool for computing very precise descriptive types for logic programs. However, in the context of real life, modular Prolog programs, the accurate results obtained by regular types often come at the price of efficiency. In this paper we propose a combination of techniques aimed at improving analysis efficiency in this context. As a first technique we allow optionally reducing the accuracy of inferred types by using only the types defined by the user or present in the libraries. We claim that, for the purpose of verifying type signatures given in the form of assertions the precision obtained using this approach is sufficient, and show that analysis times can be reduced significantly. Our second technique is aimed at dealing with situations where we would like to limit the amount of reanalysis performed, especially for library modules. Borrowing some ideas from polymorphic type systems, we show how to solve the problem by admitting parameters in type specifications. This allows us to compose new call patterns with some pre computed analysis info without losing any information. We argue that together these two techniques contribute to the practical and scalable analysis and verification of types in Prolog programs

    Knowledge Compilation of Logic Programs Using Approximation Fixpoint Theory

    Full text link
    To appear in Theory and Practice of Logic Programming (TPLP), Proceedings of ICLP 2015 Recent advances in knowledge compilation introduced techniques to compile \emph{positive} logic programs into propositional logic, essentially exploiting the constructive nature of the least fixpoint computation. This approach has several advantages over existing approaches: it maintains logical equivalence, does not require (expensive) loop-breaking preprocessing or the introduction of auxiliary variables, and significantly outperforms existing algorithms. Unfortunately, this technique is limited to \emph{negation-free} programs. In this paper, we show how to extend it to general logic programs under the well-founded semantics. We develop our work in approximation fixpoint theory, an algebraical framework that unifies semantics of different logics. As such, our algebraical results are also applicable to autoepistemic logic, default logic and abstract dialectical frameworks
    corecore