65 research outputs found

    Structure and algorithms for (cap, even hole)-free graphs

    Get PDF
    A graph is even-hole-free if it has no induced even cycles of length 4 or more. A cap is a cycle of length at least 5 with exactly one chord and that chord creates a triangle with the cycle. In this paper, we consider (cap, even hole)-free graphs, and more generally, (cap, 4-hole)-free odd-signable graphs. We give an explicit construction of these graphs. We prove that every such graph G has a vertex of degree at most [View the MathML source], and hence [View the MathML source], where ω(G) denotes the size of a largest clique in G and χ(G) denotes the chromatic number of G. We give an O(nm) algorithm for q-coloring these graphs for fixed q and an O(nm) algorithm for maximum weight stable set, where n is the number of vertices and m is the number of edges of the input graph. We also give a polynomial-time algorithm for minimum coloring. Our algorithms are based on our results that triangle-free odd-signable graphs have treewidth at most 5 and thus have clique-width at most 48, and that (cap, 4-hole)-free odd-signable graphs G without clique cutsets have treewidth at most 6ω(G)−1 and clique-width at most 48

    On the structure of Gröbner bases for graph coloring ideals

    Get PDF
    In this thesis, we look at a well-known connection between the graph coloring problem and the solvability of certain systems of polynomial equations. In particular, we examine the connection between the structure of a graph and the structure of the Gröbner bases of the graph’s coloring ideal. From a theoretical viewpoint, we show some properties of such Gröbner bases, and we develop a polynomial-time algorithm to compute a Gröbner basis for chordal graphs. From the experimental side, we state results about specific Gröbner bases and about the Gröbner fan for a variety of graph families. Moreover, some heuristics and techniques are explored that reduce the computational complexity. The relevance of heuristic methods is justified by a section about expected intrinsic hardness of Gröbner basis computations

    Treewidth versus clique number. II. Tree-independence number

    Full text link
    In 2020, we initiated a systematic study of graph classes in which the treewidth can only be large due to the presence of a large clique, which we call (tw,ω)(\mathrm{tw},\omega)-bounded. While (tw,ω)(\mathrm{tw},\omega)-bounded graph classes are known to enjoy some good algorithmic properties related to clique and coloring problems, it is an interesting open problem whether (tw,ω)(\mathrm{tw},\omega)-boundedness also has useful algorithmic implications for problems related to independent sets. We provide a partial answer to this question by means of a new min-max graph invariant related to tree decompositions. We define the independence number of a tree decomposition T\mathcal{T} of a graph as the maximum independence number over all subgraphs of GG induced by some bag of T\mathcal{T}. The tree-independence number of a graph GG is then defined as the minimum independence number over all tree decompositions of GG. Generalizing a result on chordal graphs due to Cameron and Hell from 2006, we show that if a graph is given together with a tree decomposition with bounded independence number, then the Maximum Weight Independent Packing problem can be solved in polynomial time. Applications of our general algorithmic result to specific graph classes will be given in the third paper of the series [Dallard, Milani\v{c}, and \v{S}torgel, Treewidth versus clique number. III. Tree-independence number of graphs with a forbidden structure].Comment: 33 pages; abstract has been shortened due to arXiv requirements. A previous version of this arXiv post has been reorganized into two parts; this is the first of the two parts (the second one is arXiv:2206.15092

    16th Scandinavian Symposium and Workshops on Algorithm Theory: SWAT 2018, June 18-20, 2018, Malmö University, Malmö, Sweden

    Get PDF

    LIPIcs, Volume 274, ESA 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 274, ESA 2023, Complete Volum

    Algorithmic Graph Theory

    Get PDF
    The main focus of this workshop was on mathematical techniques needed for the development of efficient solutions and algorithms for computationally difficult graph problems. The techniques studied at the workshhop included: the probabilistic method and randomized algorithms, approximation and optimization, structured families of graphs and approximation algorithms for large problems. The workshop Algorithmic Graph Theory was attended by 46 participants, many of them being young researchers. In 15 survey talks an overview of recent developments in Algorithmic Graph Theory was given. These talks were supplemented by 10 shorter talks and by two special sessions
    corecore