309 research outputs found

    Probabilistic Framework for Sensor Management

    Get PDF
    A probabilistic sensor management framework is introduced, which maximizes the utility of sensor systems with many different sensing modalities by dynamically configuring the sensor system in the most beneficial way. For this purpose, techniques from stochastic control and Bayesian estimation are combined such that long-term effects of possible sensor configurations and stochastic uncertainties resulting from noisy measurements can be incorporated into the sensor management decisions

    Applications in Electronics Pervading Industry, Environment and Society

    Get PDF
    This book features the manuscripts accepted for the Special Issue “Applications in Electronics Pervading Industry, Environment and Society—Sensing Systems and Pervasive Intelligence” of the MDPI journal Sensors. Most of the papers come from a selection of the best papers of the 2019 edition of the “Applications in Electronics Pervading Industry, Environment and Society” (APPLEPIES) Conference, which was held in November 2019. All these papers have been significantly enhanced with novel experimental results. The papers give an overview of the trends in research and development activities concerning the pervasive application of electronics in industry, the environment, and society. The focus of these papers is on cyber physical systems (CPS), with research proposals for new sensor acquisition and ADC (analog to digital converter) methods, high-speed communication systems, cybersecurity, big data management, and data processing including emerging machine learning techniques. Physical implementation aspects are discussed as well as the trade-off found between functional performance and hardware/system costs

    Doctor of Philosophy

    Get PDF
    dissertationClosed-loop control of wireless capsule endoscopes is an active area of research because it would drastically improve screening of the gastrointestinal tract. Traditional endoscopic procedures are unable to view the entire gastrointestinal tract and current commercial wireless capsule endoscopes are limited in their effectiveness due to their passive nature. This dissertation advances the field of active capsule endoscopy by developing methods to localize the full six-degree-of-freedom (6-DOF) pose of a screw-type magnetic capsule while it is being propelled through a lumen (such as the small intestines) using an external rotating magnetic dipole. The same external magnetic dipole is utilized for both propulsion and localization. Hardware was designed and constructed to enable testing of the magnetic localization and propulsion methods, including a robotic end-effector used as the external actuator magnet, and a prototype capsule embedded with Hall-effect sensors. Due to the use of a rotating magnetic field for propulsion, at any given time, the capsule can be in one of three regimes: synchronously rotating with the applied field, in "step-out" where it is free to move but the external field is rotating too quickly for the capsule to remain synchronously rotating, or completely stationary. We show that it is only necessary to distinguish whether or not the capsule is synchronously rotating (i.e., a single localization method can be used for a capsule in either the step-out or stationary regimes). Two magnetic localization methods are developed. The first uses nonlinear least squares to estimate the capsule's pose when it has no (or approximately no) net motion (e.g., to find the initial capsule pose or when it is stuck in an intestinal fold). The second method estimates the 6-DOF capsule pose as it synchronously rotates with the applied magnetic field using a square-root variant of the Unscented Kalman filter. A simple process model is adopted that restricts the capsule's movement to translation along and rotation about its principle axis. The capsule is actively propelled forward or backward, but it is not actively steered, rather, steering is provided by the lumen. The propulsion parameters that transform magnetic force and torque to the capsule's spatial velocity and angular velocity are estimated with an additional square-root Unscented Kalman filter to enable the capsule to navigate heterogeneous environments such as the small intestines. An optimized localization-propulsion system is described using the two localization algorithms and prior work in screw-type magnetic capsule propulsion with a single rotating dipole field. The capsule's regime is determined and the corresponding localization method is employed. Based on the capsule's estimated pose and the current estimates of its propulsion parameters, the actuator magnet's pose relative to the capsule is optimized to maximize the capsule's forward propulsion. Using this system, our prototype magnetic capsule successfully completed U-shaped and S-shaped trajectories in fresh bovine intestines with an average forward velocity of 5.5mm/s and 3.5 mm/s, respectively. At this rate it would take approximately 18-30 minutes to traverse the 6 meters of a typical human small intestine

    Nonlinear Gaussian Filtering : Theory, Algorithms, and Applications

    Get PDF
    By restricting to Gaussian distributions, the optimal Bayesian filtering problem can be transformed into an algebraically simple form, which allows for computationally efficient algorithms. Three problem settings are discussed in this thesis: (1) filtering with Gaussians only, (2) Gaussian mixture filtering for strong nonlinearities, (3) Gaussian process filtering for purely data-driven scenarios. For each setting, efficient algorithms are derived and applied to real-world problems

    Design and implementation of an attitude determination and control system for the AntelSat

    Get PDF
    This thesis describes the design, analysis and construction of the Attitude Determination and Control System (ADCS) for the first Uruguayan nanosatellite, the AntelSat. The AntelSat project is a joint venture between the Electrical Engineering Institute (IIE) of Faculty of Engineering, Universidad de la República (UdelaR University) and Antel, the Uruguayan national telecommunications company. The satellite consists of a two-unit (2U) CubeSat, which implies that the ADCS is designed under tight mass, size, and energy constraints. In addition, these kind of satellites usually have limited sensing, computational and communication capabilities, motivating the need for autonomous and computationally eficient algorithms. Under these strict restraints, developing an effective attitude control system poses a significant challenge. As presented in this thesis, for the attitude determination section of the ADCS, data available from sensors is taken as inputs for the computation of an optimal quaternion estimator. The use of a quaternion implementation of an unscented Kalman filter is also discussed. Additionally, attitude control is based on magnetic actuation with magnetorquers being commanded by pulse width modulation. It is shown that the control system is able to achieve the detumbling of the satellite after separation from the launch interface using the reliable B-dot control law. Nadirpointing control is achieved with the use of a simple Linear Quadratic Regulator. Also pertinent is the simulation environment that was implemented to develop the attitude determination and control algorithms and also to validate their performance. ADCS hardware prototypes and flight versions that were designed and constructed are introduced.Este documento de tesis describe el diseño, análisis y construcción de el Sistema de Determinación y Control de Actitud (ADCS por sus siglas en inglés) del primer satélite uruguayo, el AntelSat. El proyecto AntelSat es una actividad conjunta entre el Instituto de Ingeniería Eléctrica (IIE) de la Facultad de Ingeniería de la Universidad de la República y Antel, la empresa de telecomunicaciones nacional de Uruguay. El satélite consiste en un CubeSat de dos unidades (2U), lo que implica que el ADCS es diseñado bajo estrictas restricciones de masa, tamaño y energía. Además, este tipo de satélites posee una capacidad computacional, de comunicaciones y de medición limitada, lo que motiva la necesidad de lograr algoritmos computacionalmente eficientes. Bajo estas estrictas limitaciones, el desarrollo de un sistema de control de actitud efectivo se traduce en un reto importante. Como se presenta en esta tesis, para el segmento de determinación de actitud del ADCS, la información proveniente de los sensores es tomada como entrada para el cálculo de un estimador de cuaternión óptimo. Se discute también el uso de una implementación con cuaterniones de un filtro de Kalman "unscented". Por otro lado, el control de actitud está basado en actuación magnética con magnetorquers comandados con modulación de ancho de pulso. Se demuestra que el sistema de control es capaz de reducir el valor de velocidad angular del satélite en la fase previa a la separación con la interfaz de lanzamiento, mediante la utilización del algoritmo B-dot. La estabilización de la actitud en modo de apunte al nadir se logra con el uso de un simple regulador lineal cuadrático. Por otra parte, se presenta el entorno de simulación que fue implementado para el desarrollo de algoritmos de determinación y control de actitud, y también para validar el desempeño de los mismos. A su vez, se exhiben el hardware del ADCS que fue diseñado y construido, tanto prototipos como versiones de vuelo

    Visual SLAM from image sequences acquired by unmanned aerial vehicles

    Get PDF
    This thesis shows that Kalman filter based approaches are sufficient for the task of simultaneous localization and mapping from image sequences acquired by unmanned aerial vehicles. Using solely direction measurements to solve the problem of simultaneous localization and mapping (SLAM) is an important part of autonomous systems. Because the need for real-time capable systems, recursive estimation techniques, Kalman filter based approaches are the main focus of interest. Unfortunately, the non-linearity of the triangulation using the direction measurements cause decrease of accuracy and consistency of the results. The first contribution of this work is a general derivation of the recursive update of the Kalman filter. This derivation is based on implicit measurement equations, having the classical iterative non-linear as well as the non-iterative and linear Kalman filter as specializations of our general derivation. Second, a new formulation of linear-motion models for the single camera state model and the sliding window camera state model are given, that make it possible to compute the prediction in a fully linear manner. The third major contribution is a novel method for the initialization of new object points in the Kalman filter. Empirical studies using synthetic and real data of an image sequence of a photogrammetric strip are made, that demonstrate and compare the influences of the initialization methods of new object points in the Kalman filter. Forth, the accuracy potential of monoscopic image sequences from unmanned aerial vehicles for autonomous localization and mapping is theoretically analyzed, which can be used for planning purposes.Visuelle gleichzeitige Lokalisierung und Kartierung aus Bildfolgen von unbemannten Flugkörpern Diese Arbeit zeigt, dass die Kalmanfilter basierte Lösung der Triangulation zur Lokalisierung und Kartierung aus Bildfolgen von unbemannten Flugkörpern realisierbar ist. Aufgrund von Echtzeitanforderungen autonomer Systeme erreichen rekursive Schätz-verfahren, insbesondere Kalmanfilter basierte Ansätze, große Beliebheit. Bedauerlicherweise treten dabei durch die Nichtlinearität der Triangulation einige Effekte auf, welche die Konsistenz und Genauigkeit der Lösung hinsichtlich der geschätzten Parameter maßgeblich beeinflussen. Der erste Beitrag dieser Arbeit besteht in der Herleitung eines generellen Verfahrens zum rekursiven Verbessern im Kalmanfilter mit impliziten Beobachtungsgleichungen. Wir zeigen, dass die klassischen Verfahren im Kalmanfilter eine Spezialisierung unseres Ansatzes darstellen. Im zweiten Beitrag erweitern wir die klassische Modellierung für ein Einkameramodell zu einem Mehrkameramodell im Kalmanfilter. Diese Erweiterung erlaubt es uns, die Prädiktion für eine lineares Bewegungsmodell vollkommen linear zu berechnen. In einem dritten Hauptbeitrag stellen wir ein neues Verfahren zur Initialisierung von Neupunkten im Kalmanfilter vor. Anhand von empirischen Untersuchungen unter Verwendung simulierter und realer Daten einer Bildfolge eines photogrammetrischen Streifens zeigen und vergleichen wir, welchen Einfluß die Initialisierungsmethoden für Neupunkte im Kalmanfilter haben und welche Genauigkeiten für diese Szenarien erreichbar sind. Am Beispiel von Bildfolgen eines unbemannten Flugkörpern zeigen wir in dieser Arbeit als vierten Beitrag, welche Genauigkeit zur Lokalisierung und Kartierung durch Triangulation möglich ist. Diese theoretische Analyse kann wiederum zu Planungszwecken verwendet werden

    Dataset of Panoramic Images for People Tracking in Service Robotics

    Get PDF
    We provide a framework for constructing a guided robot for usage in hospitals in this thesis. The omnidirectional camera on the robot allows it to recognize and track the person who is following it. Furthermore, when directing the individual to their preferred position in the hospital, the robot must be aware of its surroundings and avoid accidents with other people or items. To train and evaluate our robot's performance, we developed an auto-labeling framework for creating a dataset of panoramic videos captured by the robot's omnidirectional camera. We labeled each person in the video and their real position in the robot's frame, enabling us to evaluate the accuracy of our tracking system and guide the development of the robot's navigation algorithms. Our research expands on earlier work that has established a framework for tracking individuals using omnidirectional cameras. We want to contribute to the continuing work to enhance the precision and dependability of these tracking systems, which is essential for the creation of efficient guiding robots in healthcare facilities, by developing a benchmark dataset. Our research has the potential to improve the patient experience and increase the efficiency of healthcare institutions by reducing staff time spent guiding patients through the facility.We provide a framework for constructing a guided robot for usage in hospitals in this thesis. The omnidirectional camera on the robot allows it to recognize and track the person who is following it. Furthermore, when directing the individual to their preferred position in the hospital, the robot must be aware of its surroundings and avoid accidents with other people or items. To train and evaluate our robot's performance, we developed an auto-labeling framework for creating a dataset of panoramic videos captured by the robot's omnidirectional camera. We labeled each person in the video and their real position in the robot's frame, enabling us to evaluate the accuracy of our tracking system and guide the development of the robot's navigation algorithms. Our research expands on earlier work that has established a framework for tracking individuals using omnidirectional cameras. We want to contribute to the continuing work to enhance the precision and dependability of these tracking systems, which is essential for the creation of efficient guiding robots in healthcare facilities, by developing a benchmark dataset. Our research has the potential to improve the patient experience and increase the efficiency of healthcare institutions by reducing staff time spent guiding patients through the facility

    Model-Based Control Using Model and Mechanization Fusion Techniques for Image-Aided Navigation

    Get PDF
    Unmanned aerial vehicles are no longer used for just reconnaissance. Current requirements call for smaller autonomous vehicles that replace the human in high-risk activities. Many times these activities are performed in GPS-degraded environments. Without GPS providing today\u27s most accurate navigation solution, autonomous navigation in tight areas is more difficult. Today, image-aided navigation is used and other methods are explored to more accurately navigate in such areas (e.g., indoors). This thesis explores the use of inertial measurements and navigation solution updates using cameras with a model-based Linear Quadratic Gaussian controller. To demonstrate the methods behind this research, the controller will provide inputs to a micro-sized helicopter that allows the vehicle to maintain hover. A new method for obtaining a more accurate navigation solution was devised, originating from the following basic setup. To begin, a nonlinear system model was identified for a micro-sized, commercial, off-the-shelf helicopter. This model was verified, then linearized about the hover condition to construct a Linear Quadratic Regulator (LQR). The state error estimates, provided by an Unscented Kalman Filter using simulated image measurement updates, are used to update the navigation solution provided by inertial measurement sensors using strapdown mechanization equations. The navigation solution is used with a reference signal to determine the position and heading error. This error, along with other states, is fed to the LQR, which controls the helicopter. Research revealed that by combining the navigation solution from the INS mechanization block with a model-based navigation solution, and combining the INS error model and system model during the time propagation in the UKF, the navigation solution error decreases by 20%. The equations used for this modification stem from state and covariance combination methods utilized in the Federated Kalman Filter

    Sonar attentive underwater navigation in structured environment

    Get PDF
    One of the fundamental requirements of a persistently Autonomous Underwater Vehicle (AUV) is a robust navigation system. The success of most complex robotic tasks depends on the accuracy of a vehicle’s navigation system. In a basic form, an AUV estimates its position using an on-board navigation sensors through Dead-Reckoning (DR). However DR navigation systems tends to drift in the long run due to accumulated measurement errors. One way of mitigating this problem require the use of Simultaneous Localization and Mapping (SLAM) by concurrently mapping external environment features. The performance of a SLAM navigation system depends on the availability of enough good features in the environment. On the contrary, a typical underwater structured environment (harbour, pier or oilfield) has a limited amount of sonar features in a limited locations, hence exploitation of good features is a key for effective underwater SLAM. This thesis develops a novel attentive sonar line feature based SLAM framework that improves the performance of a SLAM navigation by steering a multibeam sonar sensor,which is mounted on a pan and tilt unit, towards feature-rich regions of the environment. A sonar salience map is generated at each vehicle pose to identify highly informative and stable regions of the environment. Results from a simulated test and real AUV experiment show an attentive SLAM performs better than a passive counterpart by repeatedly visiting good sonar landmarks

    Robust and Efficient Inference of Scene and Object Motion in Multi-Camera Systems

    Get PDF
    Multi-camera systems have the ability to overcome some of the fundamental limitations of single camera based systems. Having multiple view points of a scene goes a long way in limiting the influence of field of view, occlusion, blur and poor resolution of an individual camera. This dissertation addresses robust and efficient inference of object motion and scene in multi-camera and multi-sensor systems. The first part of the dissertation discusses the role of constraints introduced by projective imaging towards robust inference of multi-camera/sensor based object motion. We discuss the role of the homography and epipolar constraints for fusing object motion perceived by individual cameras. For planar scenes, the homography constraints provide a natural mechanism for data association. For scenes that are not planar, the epipolar constraint provides a weaker multi-view relationship. We use the epipolar constraint for tracking in multi-camera and multi-sensor networks. In particular, we show that the epipolar constraint reduces the dimensionality of the state space of the problem by introducing a ``shared'' state space for the joint tracking problem. This allows for robust tracking even when one of the sensors fail due to poor SNR or occlusion. The second part of the dissertation deals with challenges in the computational aspects of tracking algorithms that are common to such systems. Much of the inference in the multi-camera and multi-sensor networks deal with complex non-linear models corrupted with non-Gaussian noise. Particle filters provide approximate Bayesian inference in such settings. We analyze the computational drawbacks of traditional particle filtering algorithms, and present a method for implementing the particle filter using the Independent Metropolis Hastings sampler, that is highly amenable to pipelined implementations and parallelization. We analyze the implementations of the proposed algorithm, and in particular concentrate on implementations that have minimum processing times. The last part of the dissertation deals with the efficient sensing paradigm of compressing sensing (CS) applied to signals in imaging, such as natural images and reflectance fields. We propose a hybrid signal model on the assumption that most real-world signals exhibit subspace compressibility as well as sparse representations. We show that several real-world visual signals such as images, reflectance fields, videos etc., are better approximated by this hybrid of two models. We derive optimal hybrid linear projections of the signal and show that theoretical guarantees and algorithms designed for CS can be easily extended to hybrid subspace-compressive sensing. Such methods reduce the amount of information sensed by a camera, and help in reducing the so called data deluge problem in large multi-camera systems
    corecore