1,424 research outputs found

    Approximating multi-objective time-dependent optimization problems

    Get PDF
    In many practical situations, decisions are multi-objective in nature. Furthermore, costs and profits are time-dependent, i.e. depending upon the time a decision is taken, different costs and profits are incurred. In this paper, we propose a generic approach to deal with multi-objective time-dependent optimization problems (MOTDP). The aim is to determine the set of Pareto solutions that capture the interactions between the different objectives. Due, to the complexity of MOTDP, an efficient approximation based on dynamic programming is developed. The approximation has a provable worst case performance guarantee. Even though the approximate Pareto set consists of less solutions, it represents a good coverage of the true set of Pareto solutions. Numerical results are presented showing the value of the approximation

    Strategies for dynamic appointment making by container terminals

    Get PDF
    We consider a container terminal that has to make appointments with barges dynamically, in real-time, and partly automatic. The challenge for the terminal is to make appointments with only limited knowledge about future arriving barges, and in the view of uncertainty and disturbances, such as uncertain arrival and handling times, as well as cancellations and no-shows. We illustrate this problem using an innovative implementation project which is currently running in the Port of Rotterdam. This project aims to align barge rotations and terminal quay schedules by means of a multi-agent system. In this\ud paper, we take the perspective of a single terminal that will participate in this planning system, and focus on the decision making capabilities of its intelligent agent. We focus on the question how the terminal operator can optimize, on an operational level, the utilization of its quay resources, while making reliable appointments with barges, i.e., with a guaranteed departure time. We explore two approaches: (i) an analytical approach based on the value of having certain intervals within the schedule and (ii) an approach based on sources of exibility that are naturally available to the terminal. We use simulation to get insight in the benefits of these approaches. We conclude that a major increase in utilization degree could be achieved only by deploying the sources of exibility, without harming the waiting time of barges too much

    A Multistage Stochastic Programming Approach to the Dynamic and Stochastic VRPTW - Extended version

    Full text link
    We consider a dynamic vehicle routing problem with time windows and stochastic customers (DS-VRPTW), such that customers may request for services as vehicles have already started their tours. To solve this problem, the goal is to provide a decision rule for choosing, at each time step, the next action to perform in light of known requests and probabilistic knowledge on requests likelihood. We introduce a new decision rule, called Global Stochastic Assessment (GSA) rule for the DS-VRPTW, and we compare it with existing decision rules, such as MSA. In particular, we show that GSA fully integrates nonanticipativity constraints so that it leads to better decisions in our stochastic context. We describe a new heuristic approach for efficiently approximating our GSA rule. We introduce a new waiting strategy. Experiments on dynamic and stochastic benchmarks, which include instances of different degrees of dynamism, show that not only our approach is competitive with state-of-the-art methods, but also enables to compute meaningful offline solutions to fully dynamic problems where absolutely no a priori customer request is provided.Comment: Extended version of the same-name study submitted for publication in conference CPAIOR201

    The time-dependent vehicle routing problem with soft time windows and stochastic travel times

    Get PDF
    This paper studies a vehicle routing problem with time-dependent and stochastic travel times. In our problem setting, customers have soft time windows. A mathematical model is used in which both efficiency for service as well as reliability for customers are taken into account. Depending on whether service times are included or not, we consider two versions of this problem. Two metaheuristics are built: a Tabu Search and an Adaptive Large Neighborhood Search. We carry out our experiments for well-known problem instances and perform comprehensive analyses on the numerical results in terms of the computational time and the solution quality. Experiments confirm that the proposed procedure is effective to obtain very good solutions to be performed in real-life environment

    Scheduled service network design with synchronization and transshipment constraints for intermodal container transportation networks

    Get PDF
    In this paper we address the problem of scheduled service network design for container freight distribution along rivers, canals, and coastlines. We propose a new concise continuous- time mixed-integer linear programming model that accurately evaluates the time of occurrence of transportation events and the number of containers transshipped between vehicles. Given the transportation network, the eet of available vehicles, the demand and the supply of containers, the sailing time of vehicles, and the structure of costs, the objective of the model is to build a minimum cost service network design and container distribution plan that denes services, their departure and arrival times, as well as vehicle and container routing. The model is solved with a commercial solver and is tested on data instances inspired from real-world problems encountered by EU carrier companies. The results of the computational study show that in scheduled service networks direct routes happen more often when either the eet capacity is tight or the handling costs and the lead time interval increase. The increase of the same parameters leads to the decrease of the number of containers transshipped between vehicles

    Inventory routing for dynamic waste collection

    Get PDF
    We consider the problem of collecting waste from sensor equipped underground containers. These sensors enable the use of a dynamic collection policy. The problem, which is known as a reverse inventory routing problem, involves decisions regarding routing and container selection. In more dense networks, the latter becomes more important. To cope with uncertainty in deposit volumes and with fluctuations due to daily and seasonal e ects, we need an anticipatory policy that balances the workload over time. We propose a relatively simple heuristic consisting of several tunable parameters depending on the day of the week. We tune the parameters of this policy using optimal learning techniques combined with simulation. We illustrate our approach using a real life problem instance of a waste collection company, located in The Netherlands, and perform experiments on several other instances. For our case study, we show that costs savings up to 40% are possible by optimizing the parameters
    • …
    corecore