10,096 research outputs found

    Characterizing and approximating eigenvalue sets of symmetric interval matrices

    Get PDF
    We consider the eigenvalue problem for the case where the input matrix is symmetric and its entries perturb in some given intervals. We present a characterization of some of the exact boundary points, which allows us to introduce an inner approximation algorithm, that in many case estimates exact bounds. To our knowledge, this is the first algorithm that is able to guaran- tee exactness. We illustrate our approach by several examples and numerical experiments

    Efficient Scalable Accurate Regression Queries in In-DBMS Analytics

    Get PDF
    Recent trends aim to incorporate advanced data analytics capabilities within DBMSs. Linear regression queries are fundamental to exploratory analytics and predictive modeling. However, computing their exact answers leaves a lot to be desired in terms of efficiency and scalability. We contribute a novel predictive analytics model and associated regression query processing algorithms, which are efficient, scalable and accurate. We focus on predicting the answers to two key query types that reveal dependencies between the values of different attributes: (i) mean-value queries and (ii) multivariate linear regression queries, both within specific data subspaces defined based on the values of other attributes. Our algorithms achieve many orders of magnitude improvement in query processing efficiency and nearperfect approximations of the underlying relationships among data attributes

    Microscopically-constrained Fock energy density functionals from chiral effective field theory. I. Two-nucleon interactions

    Full text link
    The density matrix expansion (DME) of Negele and Vautherin is a convenient tool to map finite-range physics associated with vacuum two- and three-nucleon interactions into the form of a Skyme-like energy density functional (EDF) with density-dependent couplings. In this work, we apply the improved formulation of the DME proposed recently in arXiv:0910.4979 by Gebremariam {\it et al.} to the non-local Fock energy obtained from chiral effective field theory (EFT) two-nucleon (NN) interactions at next-to-next-to-leading-order (N2^2LO). The structure of the chiral interactions is such that each coupling in the DME Fock functional can be decomposed into a cutoff-dependent coupling {\it constant} arising from zero-range contact interactions and a cutoff-independent coupling {\it function} of the density arising from the universal long-range pion exchanges. This motivates a new microscopically-guided Skyrme phenomenology where the density-dependent couplings associated with the underlying pion-exchange interactions are added to standard empirical Skyrme functionals, and the density-independent Skyrme parameters subsequently refit to data. A Mathematica notebook containing the novel density-dependent couplings is provided.Comment: 28 pages, 12 figures. Mathematica notebook provided with submission

    Analysis of Carries in Signed Digit Expansions

    Get PDF
    The number of positive and negative carries in the addition of two independent random signed digit expansions of given length is analyzed asymptotically for the (q,d)(q, d)-system and the symmetric signed digit expansion. The results include expectation, variance, covariance between the positive and negative carries and a central limit theorem. Dependencies between the digits require determining suitable transition probabilities to obtain equidistribution on all expansions of given length. A general procedure is described to obtain such transition probabilities for arbitrary regular languages. The number of iterations in von Neumann's parallel addition method for the symmetric signed digit expansion is also analyzed, again including expectation, variance and convergence to a double exponential limiting distribution. This analysis is carried out in a general framework for sequences of generating functions

    Volatility forecasting

    Get PDF
    Volatility has been one of the most active and successful areas of research in time series econometrics and economic forecasting in recent decades. This chapter provides a selective survey of the most important theoretical developments and empirical insights to emerge from this burgeoning literature, with a distinct focus on forecasting applications. Volatility is inherently latent, and Section 1 begins with a brief intuitive account of various key volatility concepts. Section 2 then discusses a series of different economic situations in which volatility plays a crucial role, ranging from the use of volatility forecasts in portfolio allocation to density forecasting in risk management. Sections 3, 4 and 5 present a variety of alternative procedures for univariate volatility modeling and forecasting based on the GARCH, stochastic volatility and realized volatility paradigms, respectively. Section 6 extends the discussion to the multivariate problem of forecasting conditional covariances and correlations, and Section 7 discusses volatility forecast evaluation methods in both univariate and multivariate cases. Section 8 concludes briefly. JEL Klassifikation: C10, C53, G1
    corecore