477 research outputs found

    Approximating TSP on Metrics with Bounded Global Growth

    Get PDF
    published_or_final_versio

    The Traveling Salesman Problem: Low-Dimensionality Implies a Polynomial Time Approximation Scheme

    Full text link
    The Traveling Salesman Problem (TSP) is among the most famous NP-hard optimization problems. We design for this problem a randomized polynomial-time algorithm that computes a (1+eps)-approximation to the optimal tour, for any fixed eps>0, in TSP instances that form an arbitrary metric space with bounded intrinsic dimension. The celebrated results of Arora (A-98) and Mitchell (M-99) prove that the above result holds in the special case of TSP in a fixed-dimensional Euclidean space. Thus, our algorithm demonstrates that the algorithmic tractability of metric TSP depends on the dimensionality of the space and not on its specific geometry. This result resolves a problem that has been open since the quasi-polynomial time algorithm of Talwar (T-04)

    Algorithmic Interpretations of Fractal Dimension

    Get PDF
    We study algorithmic problems on subsets of Euclidean space of low fractal dimension. These spaces are the subject of intensive study in various branches of mathematics, including geometry, topology, and measure theory. There are several well-studied notions of fractal dimension for sets and measures in Euclidean space. We consider a definition of fractal dimension for finite metric spaces which agrees with standard notions used to empirically estimate the fractal dimension of various sets. We define the fractal dimension of some metric space to be the infimum delta>0, such that for any eps>0, for any ball B of radius r >= 2eps, and for any eps-net N, we have |B cap N|=O((r/eps)^delta). Using this definition we obtain faster algorithms for a plethora of classical problems on sets of low fractal dimension in Euclidean space. Our results apply to exact and fixed-parameter algorithms, approximation schemes, and spanner constructions. Interestingly, the dependence of the performance of these algorithms on the fractal dimension nearly matches the currently best-known dependence on the standard Euclidean dimension. Thus, when the fractal dimension is strictly smaller than the ambient dimension, our results yield improved solutions in all of these settings. We remark that our definition of fractal definition is equivalent up to constant factors to the well-studied notion of doubling dimension. However, in the problems that we consider, the dimension appears in the exponent of the running time, and doubling dimension is not precise enough for capturing the best possible such exponent for subsets of Euclidean space. Thus our work is orthogonal to previous results on spaces of low doubling dimension; while algorithms on spaces of low doubling dimension seek to extend results from the case of low dimensional Euclidean spaces to more general metric spaces, our goal is to obtain faster algorithms for special pointsets in Euclidean space

    TSP in a Simple Polygon

    Get PDF
    We study the Traveling Salesman Problem inside a simple polygon. In this problem, which we call tsp in a simple polygon, we wish to compute a shortest tour that visits a given set S of n sites inside a simple polygon P with m edges while staying inside the polygon. This natural problem has, to the best of our knowledge, not been studied so far from a theoretical perspective. It can be solved exactly in poly(n,m) + 2^O(?nlog n) time, using an algorithm by Marx, Pilipczuk, and Pilipczuk (FOCS 2018) for subset tsp as a subroutine. We present a much simpler algorithm that solves tsp in a simple polygon directly and that has the same running time

    Information-Theoretic Active Perception for Multi-Robot Teams

    Get PDF
    Multi-robot teams that intelligently gather information have the potential to transform industries as diverse as agriculture, space exploration, mining, environmental monitoring, search and rescue, and construction. Despite large amounts of research effort on active perception problems, there still remain significant challenges. In this thesis, we present a variety of information-theoretic control policies that enable teams of robots to efficiently estimate different quantities of interest. Although these policies are intractable in general, we develop a series of approximations that make them suitable for real time use. We begin by presenting a unified estimation and control scheme based on Shannon\u27s mutual information that lets small teams of robots equipped with range-only sensors track a single static target. By creating approximate representations, we substantially reduce the complexity of this approach, letting the team track a mobile target. We then scale this approach to larger teams that need to localize a large and unknown number of targets. We also examine information-theoretic control policies to autonomously construct 3D maps with ground and aerial robots. By using Cauchy-Schwarz quadratic mutual information, we show substantial computational improvements over similar information-theoretic measures. To map environments faster, we adopt a hierarchical planning approach which incorporates trajectory optimization so that robots can quickly determine feasible and locally optimal trajectories. Finally, we present a high-level planning algorithm that enables heterogeneous robots to cooperatively construct maps

    Fractal Dimension and Lower Bounds for Geometric Problems

    Get PDF
    We study the complexity of geometric problems on spaces of low fractal dimension. It was recently shown by [Sidiropoulos & Sridhar, SoCG 2017] that several problems admit improved solutions when the input is a pointset in Euclidean space with fractal dimension smaller than the ambient dimension. In this paper we prove nearly-matching lower bounds, thus establishing nearly-optimal bounds for various problems as a function of the fractal dimension. More specifically, we show that for any set of n points in d-dimensional Euclidean space, of fractal dimension delta in (1,d), for any epsilon>0 and c >= 1, any c-spanner must have treewidth at least Omega(n^{1-1/(delta - epsilon)} / c^{d-1}), matching the previous upper bound. The construction used to prove this lower bound on the treewidth of spanners, can also be used to derive lower bounds on the running time of algorithms for various problems, assuming the Exponential Time Hypothesis. We provide two prototypical results of this type: - For any delta in (1,d) and any epsilon >0, d-dimensional Euclidean TSP on n points with fractal dimension at most delta cannot be solved in time 2^{O(n^{1-1/(delta - epsilon)})}. The best-known upper bound is 2^{O(n^{1-1/delta} log n)}. - For any delta in (1,d) and any epsilon >0, the problem of finding k-pairwise non-intersecting d-dimensional unit balls/axis parallel unit cubes with centers having fractal dimension at most delta cannot be solved in time f(k)n^{O (k^{1-1/(delta - epsilon)})} for any computable function f. The best-known upper bound is n^{O(k^{1-1/delta} log n)}. The above results nearly match previously known upper bounds from [Sidiropoulos & Sridhar, SoCG 2017], and generalize analogous lower bounds for the case of ambient dimension due to [Marx & Sidiropoulos, SoCG 2014]
    • …
    corecore