5,734 research outputs found

    Influence of context on users’ views about explanations for decision-tree predictions

    Get PDF
    This research was supported in part by grant DP190100006 from the Australian Research Council. Ethics approval for the user studies was obtained from Monash University Human Research Ethics Committee (ID-24208). We thank Marko Bohanec, one of the creators of the Nursery dataset, for helping us understand the features and their values. We are also grateful to the anonymous reviewers for their helpful comments.Peer reviewedPostprin

    Dynamics and Modelling of the 2015 Calbuco eruption Volcanic Debris Flows (Chile). From field evidence to a primary lahar model

    Get PDF
    The Calbuco volcanic eruption of 2015, was characterized by two explosive phases with partialand major column collapses that triggered lahars in many of the flanks of the volcano. Large lahar flows descended to the southern flank where highly fractured ice bodies were emplaced on steep slopes.In this study, we present a chronology of the volcanic flows based on a multi parameterdata set that includes social media, reports of authoritative institutions, instrumental monitoringdata and published research literature on the eruption. Our review established thatlahars in the Amarillo river began during the first phase of the eruption due to the sustained emplacement of pyroclastic flows in its catchment. In contrast, we propose that the lahars in theBlanco – Correntoso river system and the Este river were likely to have been triggered by asudden mechanical collapse of the glacier that triggered mixed avalanches which transitionedinto lahars downstream.Our observations include inundation cross-sections, estimates of flow speeds, and characterization of the morphology, grain sizes, and componentry of deposits.Field measurements are used together with instrumental data for calibrating a dynamic, physics-based model of lahar, Laharflow. We model flows in the Blanco – Correntoso river system and explore the influence of the model parameters on flow predictions in an ensemble of simulations. We develop a calibration that accounts for the substantial epistemic uncertainties in our observations and the model formulation, that seeks to determine plausible ranges for the model parameters, including those representing the lahar source. Our approach highlights the parameters in the model that have a dominant effect on the ability of the model to match observations, indicating where further development and additional observations could improve model predictions. The simulations in our ensemble that provide plausible matches to the observations are combined to produce flow inundation maps

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    Oracles & Followers: Stackelberg Equilibria in Deep Multi-Agent Reinforcement Learning

    Full text link
    Stackelberg equilibria arise naturally in a range of popular learning problems, such as in security games or indirect mechanism design, and have received increasing attention in the reinforcement learning literature. We present a general framework for implementing Stackelberg equilibria search as a multi-agent RL problem, allowing a wide range of algorithmic design choices. We discuss how previous approaches can be seen as specific instantiations of this framework. As a key insight, we note that the design space allows for approaches not previously seen in the literature, for instance by leveraging multitask and meta-RL techniques for follower convergence. We propose one such approach using contextual policies, and evaluate it experimentally on both standard and novel benchmark domains, showing greatly improved sample efficiency compared to previous approaches. Finally, we explore the effect of adopting algorithm designs outside the borders of our framework

    The Application of Data Analytics Technologies for the Predictive Maintenance of Industrial Facilities in Internet of Things (IoT) Environments

    Get PDF
    In industrial production environments, the maintenance of equipment has a decisive influence on costs and on the plannability of production capacities. In particular, unplanned failures during production times cause high costs, unplanned downtimes and possibly additional collateral damage. Predictive Maintenance starts here and tries to predict a possible failure and its cause so early that its prevention can be prepared and carried out in time. In order to be able to predict malfunctions and failures, the industrial plant with its characteristics, as well as wear and ageing processes, must be modelled. Such modelling can be done by replicating its physical properties. However, this is very complex and requires enormous expert knowledge about the plant and about wear and ageing processes of each individual component. Neural networks and machine learning make it possible to train such models using data and offer an alternative, especially when very complex and non-linear behaviour is evident. In order for models to make predictions, as much data as possible about the condition of a plant and its environment and production planning data is needed. In Industrial Internet of Things (IIoT) environments, the amount of available data is constantly increasing. Intelligent sensors and highly interconnected production facilities produce a steady stream of data. The sheer volume of data, but also the steady stream in which data is transmitted, place high demands on the data processing systems. If a participating system wants to perform live analyses on the incoming data streams, it must be able to process the incoming data at least as fast as the continuous data stream delivers it. If this is not the case, the system falls further and further behind in processing and thus in its analyses. This also applies to Predictive Maintenance systems, especially if they use complex and computationally intensive machine learning models. If sufficiently scalable hardware resources are available, this may not be a problem at first. However, if this is not the case or if the processing takes place on decentralised units with limited hardware resources (e.g. edge devices), the runtime behaviour and resource requirements of the type of neural network used can become an important criterion. This thesis addresses Predictive Maintenance systems in IIoT environments using neural networks and Deep Learning, where the runtime behaviour and the resource requirements are relevant. The question is whether it is possible to achieve better runtimes with similarly result quality using a new type of neural network. The focus is on reducing the complexity of the network and improving its parallelisability. Inspired by projects in which complexity was distributed to less complex neural subnetworks by upstream measures, two hypotheses presented in this thesis emerged: a) the distribution of complexity into simpler subnetworks leads to faster processing overall, despite the overhead this creates, and b) if a neural cell has a deeper internal structure, this leads to a less complex network. Within the framework of a qualitative study, an overall impression of Predictive Maintenance applications in IIoT environments using neural networks was developed. Based on the findings, a novel model layout was developed named Sliced Long Short-Term Memory Neural Network (SlicedLSTM). The SlicedLSTM implements the assumptions made in the aforementioned hypotheses in its inner model architecture. Within the framework of a quantitative study, the runtime behaviour of the SlicedLSTM was compared with that of a reference model in the form of laboratory tests. The study uses synthetically generated data from a NASA project to predict failures of modules of aircraft gas turbines. The dataset contains 1,414 multivariate time series with 104,897 samples of test data and 160,360 samples of training data. As a result, it could be proven for the specific application and the data used that the SlicedLSTM delivers faster processing times with similar result accuracy and thus clearly outperforms the reference model in this respect. The hypotheses about the influence of complexity in the internal structure of the neuronal cells were confirmed by the study carried out in the context of this thesis

    Current and Future Challenges in Knowledge Representation and Reasoning

    Full text link
    Knowledge Representation and Reasoning is a central, longstanding, and active area of Artificial Intelligence. Over the years it has evolved significantly; more recently it has been challenged and complemented by research in areas such as machine learning and reasoning under uncertainty. In July 2022 a Dagstuhl Perspectives workshop was held on Knowledge Representation and Reasoning. The goal of the workshop was to describe the state of the art in the field, including its relation with other areas, its shortcomings and strengths, together with recommendations for future progress. We developed this manifesto based on the presentations, panels, working groups, and discussions that took place at the Dagstuhl Workshop. It is a declaration of our views on Knowledge Representation: its origins, goals, milestones, and current foci; its relation to other disciplines, especially to Artificial Intelligence; and on its challenges, along with key priorities for the next decade

    Auditable and performant Byzantine consensus for permissioned ledgers

    Get PDF
    Permissioned ledgers allow users to execute transactions against a data store, and retain proof of their execution in a replicated ledger. Each replica verifies the transactions’ execution and ensures that, in perpetuity, a committed transaction cannot be removed from the ledger. Unfortunately, this is not guaranteed by today’s permissioned ledgers, which can be re-written if an arbitrary number of replicas collude. In addition, the transaction throughput of permissioned ledgers is low, hampering real-world deployments, by not taking advantage of multi-core CPUs and hardware accelerators. This thesis explores how permissioned ledgers and their consensus protocols can be made auditable in perpetuity; even when all replicas collude and re-write the ledger. It also addresses how Byzantine consensus protocols can be changed to increase the execution throughput of complex transactions. This thesis makes the following contributions: 1. Always auditable Byzantine consensus protocols. We present a permissioned ledger system that can assign blame to individual replicas regardless of how many of them misbehave. This is achieved by signing and storing consensus protocol messages in the ledger and providing clients with signed, universally-verifiable receipts. 2. Performant transaction execution with hardware accelerators. Next, we describe a cloud-based ML inference service that provides strong integrity guarantees, while staying compatible with current inference APIs. We change the Byzantine consensus protocol to execute machine learning (ML) inference computation on GPUs to optimize throughput and latency of ML inference computation. 3. Parallel transactions execution on multi-core CPUs. Finally, we introduce a permissioned ledger that executes transactions, in parallel, on multi-core CPUs. We separate the execution of transactions between the primary and secondary replicas. The primary replica executes transactions on multiple CPU cores and creates a dependency graph of the transactions that the backup replicas utilize to execute transactions in parallel.Open Acces

    Amortised Inference in Bayesian Neural Networks

    Full text link
    Meta-learning is a framework in which machine learning models train over a set of datasets in order to produce predictions on new datasets at test time. Probabilistic meta-learning has received an abundance of attention from the research community in recent years, but a problem shared by many existing probabilistic meta-models is that they require a very large number of datasets in order to produce high-quality predictions with well-calibrated uncertainty estimates. In many applications, however, such quantities of data are simply not available. In this dissertation we present a significantly more data-efficient approach to probabilistic meta-learning through per-datapoint amortisation of inference in Bayesian neural networks, introducing the Amortised Pseudo-Observation Variational Inference Bayesian Neural Network (APOVI-BNN). First, we show that the approximate posteriors obtained under our amortised scheme are of similar or better quality to those obtained through traditional variational inference, despite the fact that the amortised inference is performed in a single forward pass. We then discuss how the APOVI-BNN may be viewed as a new member of the neural process family, motivating the use of neural process training objectives for potentially better predictive performance on complex problems as a result. Finally, we assess the predictive performance of the APOVI-BNN against other probabilistic meta-models in both a one-dimensional regression problem and in a significantly more complex image completion setting. In both cases, when the amount of training data is limited, our model is the best in its class.Comment: This thesis served as the author's final project report for the University of Cambridge part IIB Engineering Tripos. 37 pages, 7 figure

    AI: Limits and Prospects of Artificial Intelligence

    Get PDF
    The emergence of artificial intelligence has triggered enthusiasm and promise of boundless opportunities as much as uncertainty about its limits. The contributions to this volume explore the limits of AI, describe the necessary conditions for its functionality, reveal its attendant technical and social problems, and present some existing and potential solutions. At the same time, the contributors highlight the societal and attending economic hopes and fears, utopias and dystopias that are associated with the current and future development of artificial intelligence
    • …
    corecore