174 research outputs found

    Non-Conservative Diffusion and its Application to Social Network Analysis

    Full text link
    The random walk is fundamental to modeling dynamic processes on networks. Metrics based on the random walk have been used in many applications from image processing to Web page ranking. However, how appropriate are random walks to modeling and analyzing social networks? We argue that unlike a random walk, which conserves the quantity diffusing on a network, many interesting social phenomena, such as the spread of information or disease on a social network, are fundamentally non-conservative. When an individual infects her neighbor with a virus, the total amount of infection increases. We classify diffusion processes as conservative and non-conservative and show how these differences impact the choice of metrics used for network analysis, as well as our understanding of network structure and behavior. We show that Alpha-Centrality, which mathematically describes non-conservative diffusion, leads to new insights into the behavior of spreading processes on networks. We give a scalable approximate algorithm for computing the Alpha-Centrality in a massive graph. We validate our approach on real-world online social networks of Digg. We show that a non-conservative metric, such as Alpha-Centrality, produces better agreement with empirical measure of influence than conservative metrics, such as PageRank. We hope that our investigation will inspire further exploration into the realms of conservative and non-conservative metrics in social network analysis

    Scalable Katz ranking computation in large static and dynamic graphs

    Get PDF
    Network analysis defines a number of centrality measures to identify the most central nodes in a network. Fast computation of those measures is a major challenge in algorithmic network analysis. Aside from closeness and betweenness, Katz centrality is one of the established centrality measures. In this paper, we consider the problem of computing rankings for Katz centrality. In particular, we propose upper and lower bounds on the Katz score of a given node. While previous approaches relied on numerical approximation or heuristics to compute Katz centrality rankings, we construct an algorithm that iteratively improves those upper and lower bounds until a correct Katz ranking is obtained. We extend our algorithm to dynamic graphs while maintaining its correctness guarantees. Experiments demonstrate that our static graph algorithm outperforms both numerical approaches and heuristics with speedups between 1.5× and 3.5×, depending on the desired quality guarantees. Our dynamic graph algorithm improves upon the static algorithm for update batches of less than 10000 edges. We provide efficient parallel CPU and GPU implementations of our algorithms that enable near real-time Katz centrality computation for graphs with hundreds of millions of nodes in fractions of seconds

    SAKE: Estimating Katz Centrality Based on Sampling for Large-Scale Social Networks

    Get PDF
    Katz centrality is a fundamental concept to measure the influence of a vertex in a social network. However, existing approaches to calculating Katz centrality in a large-scale network are unpractical and computationally expensive. In this article, we propose a novel method to estimate Katz centrality based on graph sampling techniques, which object to achieve comparable estimation accuracy of the state-of-the-arts with much lower computational complexity. Specifically, we develop a Horvitz–Thompson estimate for Katz centrality by using a multi-round sampling approach and deriving an unbiased mean value estimator. We further propose SAKE, a Sampling-based Algorithm for fast Katz centrality Estimation. We prove that the estimator calculated by SAKE is probabilistically guaranteed to be within an additive error from the exact value. Extensive evaluation experiments based on four real-world networks show that the proposed algorithm can estimate Katz centralities for partial vertices with low sampling rate, low computation time, and it works well in identifying high influence vertices in social networks

    Parametric controllability of the personalized PageRank: Classic model vs biplex approach

    Full text link
    [EN] Measures of centrality in networks defined by means of matrix algebra, like PageRank-type centralities, have been used for over 70 years. Recently, new extensions of PageRank have been formulated and may include a personalization (or teleportation) vector. It is accepted that one of the key issues for any centrality measure formulation is to what extent someone can control its variability. In this paper, we compare the limits of variability of two centrality measures for complex networks that we call classic PageRank (PR) and biplex approach PageRank (BPR). Both centrality measures depend on the so-called damping parameter alpha that controls the quantity of teleportation. Our first result is that the intersection of the intervals of variation of both centrality measures is always a nonempty set. Our second result is that when alpha is lower that 0.48 (and, therefore, the ranking is highly affected by teleportation effects) then the upper limits of PR are more controllable than the upper limits of BPR; on the contrary, when alpha is greater than 0.5 (and we recall that the usual PageRank algorithm uses the value 0.85), then the upper limits of PR are less controllable than the upper limits of BPR, provided certain mild assumptions on the local structure of the graph. Regarding the lower limits of variability, we give a result for small values of alpha. We illustrate the results with some analytical networks and also with a real Facebook network.This work has been partially supported by the Spanish Ministry of Science, Innovation and Universities under Project Nos. PGC2018-101625-B-I00, MTM2016-76808-P, and MTM2017-84194-P (AEI/FEDER, UE).Flores, J.; GarcĂ­a, E.; Pedroche SĂĄnchez, F.; Romance, M. (2020). Parametric controllability of the personalized PageRank: Classic model vs biplex approach. Chaos An Interdisciplinary Journal of Nonlinear Science. 30(2):1-15. https://doi.org/10.1063/1.5128567S115302Agryzkov, T., Curado, M., Pedroche, F., Tortosa, L., & Vicent, J. (2019). Extending the Adapted PageRank Algorithm Centrality to Multiplex Networks with Data Using the PageRank Two-Layer Approach. Symmetry, 11(2), 284. doi:10.3390/sym11020284Agryzkov, T., Pedroche, F., Tortosa, L., & Vicent, J. (2018). Combining the Two-Layers PageRank Approach with the APA Centrality in Networks with Data. ISPRS International Journal of Geo-Information, 7(12), 480. doi:10.3390/ijgi7120480Allcott, H., Gentzkow, M., & Yu, C. (2019). Trends in the diffusion of misinformation on social media. Research & Politics, 6(2), 205316801984855. doi:10.1177/2053168019848554Aleja, D., Criado, R., GarcĂ­a del Amo, A. J., PĂ©rez, Á., & Romance, M. (2019). Non-backtracking PageRank: From the classic model to hashimoto matrices. Chaos, Solitons & Fractals, 126, 283-291. doi:10.1016/j.chaos.2019.06.017Barabási, A.-L., & Albert, R. (1999). Emergence of Scaling in Random Networks. Science, 286(5439), 509-512. doi:10.1126/science.286.5439.509Bavelas, A. (1948). A Mathematical Model for Group Structures. Human Organization, 7(3), 16-30. doi:10.17730/humo.7.3.f4033344851gl053Benson, A. R. (2019). Three Hypergraph Eigenvector Centralities. SIAM Journal on Mathematics of Data Science, 1(2), 293-312. doi:10.1137/18m1203031Boccaletti, S., Bianconi, G., Criado, R., del Genio, C. I., GĂłmez-Gardeñes, J., Romance, M., 
 Zanin, M. (2014). The structure and dynamics of multilayer networks. Physics Reports, 544(1), 1-122. doi:10.1016/j.physrep.2014.07.001Boldi, P., & Vigna, S. (2014). Axioms for Centrality. Internet Mathematics, 10(3-4), 222-262. doi:10.1080/15427951.2013.865686Boldi, P., Santini, M., & Vigna, S. (2009). PageRank. ACM Transactions on Information Systems, 27(4), 1-23. doi:10.1145/1629096.1629097Bonacich, P. (1972). Factoring and weighting approaches to status scores and clique identification. The Journal of Mathematical Sociology, 2(1), 113-120. doi:10.1080/0022250x.1972.9989806Borgatti, S. P., & Everett, M. G. (2006). A Graph-theoretic perspective on centrality. Social Networks, 28(4), 466-484. doi:10.1016/j.socnet.2005.11.005Buzzanca, M., Carchiolo, V., Longheu, A., Malgeri, M., & Mangioni, G. (2018). Black hole metric: Overcoming the pagerank normalization problem. Information Sciences, 438, 58-72. doi:10.1016/j.ins.2018.01.033De Domenico, M., SolĂ©-Ribalta, A., Omodei, E., GĂłmez, S., & Arenas, A. (2015). Ranking in interconnected multilayer networks reveals versatile nodes. Nature Communications, 6(1). doi:10.1038/ncomms7868DeFord, D. R., & Pauls, S. D. (2017). A new framework for dynamical models on multiplex networks. Journal of Complex Networks, 6(3), 353-381. doi:10.1093/comnet/cnx041Del Corso, G. M., & Romani, F. (2016). A multi-class approach for ranking graph nodes: Models and experiments with incomplete data. Information Sciences, 329, 619-637. doi:10.1016/j.ins.2015.09.046Estrada, E., & Silver, G. (2017). Accounting for the role of long walks on networks via a new matrix function. Journal of Mathematical Analysis and Applications, 449(2), 1581-1600. doi:10.1016/j.jmaa.2016.12.062Festinger, L. (1949). The Analysis of Sociograms using Matrix Algebra. Human Relations, 2(2), 153-158. doi:10.1177/001872674900200205Votruba, J. (1975). On the determination of χl,η+−0 AND η000 from bubble chamber measurements. Czechoslovak Journal of Physics, 25(6), 619-625. doi:10.1007/bf01591018Freeman, L. C. (1978). Centrality in social networks conceptual clarification. Social Networks, 1(3), 215-239. doi:10.1016/0378-8733(78)90021-7Ermann, L., Frahm, K. M., & Shepelyansky, D. L. (2015). Google matrix analysis of directed networks. Reviews of Modern Physics, 87(4), 1261-1310. doi:10.1103/revmodphys.87.1261Frahm, K. M., & Shepelyansky, D. L. (2019). Ising-PageRank model of opinion formation on social networks. Physica A: Statistical Mechanics and its Applications, 526, 121069. doi:10.1016/j.physa.2019.121069GarcĂ­a, E., Pedroche, F., & Romance, M. (2013). On the localization of the personalized PageRank of complex networks. Linear Algebra and its Applications, 439(3), 640-652. doi:10.1016/j.laa.2012.10.051Gu, C., Jiang, X., Shao, C., & Chen, Z. (2018). A GMRES-Power algorithm for computing PageRank problems. Journal of Computational and Applied Mathematics, 343, 113-123. doi:10.1016/j.cam.2018.03.017Halu, A., MondragĂłn, R. J., Panzarasa, P., & Bianconi, G. (2013). Multiplex PageRank. PLoS ONE, 8(10), e78293. doi:10.1371/journal.pone.0078293Horn, R. A., & Johnson, C. R. (1991). Topics in Matrix Analysis. doi:10.1017/cbo9780511840371Iacovacci, J., & Bianconi, G. (2016). Extracting information from multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 065306. doi:10.1063/1.4953161Iacovacci, J., Rahmede, C., Arenas, A., & Bianconi, G. (2016). Functional Multiplex PageRank. EPL (Europhysics Letters), 116(2), 28004. doi:10.1209/0295-5075/116/28004IvĂĄn, G., & Grolmusz, V. (2010). When the Web meets the cell: using personalized PageRank for analyzing protein interaction networks. Bioinformatics, 27(3), 405-407. doi:10.1093/bioinformatics/btq680Kalecky, K., & Cho, Y.-R. (2018). PrimAlign: PageRank-inspired Markovian alignment for large biological networks. Bioinformatics, 34(13), i537-i546. doi:10.1093/bioinformatics/bty288Katz, L. (1953). A new status index derived from sociometric analysis. Psychometrika, 18(1), 39-43. doi:10.1007/bf02289026Langville, A., & Meyer, C. (2004). Deeper Inside PageRank. Internet Mathematics, 1(3), 335-380. doi:10.1080/15427951.2004.10129091Liu, Y.-Y., Slotine, J.-J., & BarabĂĄsi, A.-L. (2011). Controllability of complex networks. Nature, 473(7346), 167-173. doi:10.1038/nature10011Lv, L., Zhang, K., Zhang, T., Bardou, D., Zhang, J., & Cai, Y. (2019). PageRank centrality for temporal networks. Physics Letters A, 383(12), 1215-1222. doi:10.1016/j.physleta.2019.01.041Massucci, F. A., & Docampo, D. (2019). Measuring the academic reputation through citation networks via PageRank. Journal of Informetrics, 13(1), 185-201. doi:10.1016/j.joi.2018.12.001Masuda, N., Porter, M. A., & Lambiotte, R. (2017). Random walks and diffusion on networks. Physics Reports, 716-717, 1-58. doi:10.1016/j.physrep.2017.07.007MigallĂłn, H., MigallĂłn, V., & PenadĂ©s, J. (2018). Parallel two-stage algorithms for solving the PageRank problem. Advances in Engineering Software, 125, 188-199. doi:10.1016/j.advengsoft.2018.03.002Newman, M. (2010). Networks. doi:10.1093/acprof:oso/9780199206650.001.0001Nicosia, V., Criado, R., Romance, M., Russo, G., & Latora, V. (2012). Controlling centrality in complex networks. Scientific Reports, 2(1). doi:10.1038/srep00218Pedroche, F., GarcĂ­a, E., Romance, M., & Criado, R. (2018). Sharp estimates for the personalized Multiplex PageRank. Journal of Computational and Applied Mathematics, 330, 1030-1040. doi:10.1016/j.cam.2017.02.013Pedroche, F., Tortosa, L., & Vicent, J. F. (2019). An Eigenvector Centrality for Multiplex Networks with Data. Symmetry, 11(6), 763. doi:10.3390/sym11060763Pedroche, F., Romance, M., & Criado, R. (2016). A biplex approach to PageRank centrality: From classic to multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 26(6), 065301. doi:10.1063/1.4952955Sciarra, C., Chiarotti, G., Laio, F., & Ridolfi, L. (2018). A change of perspective in network centrality. Scientific Reports, 8(1). doi:10.1038/s41598-018-33336-8Scholz, M., Pfeiffer, J., & Rothlauf, F. (2017). Using PageRank for non-personalized default rankings in dynamic markets. European Journal of Operational Research, 260(1), 388-401. doi:10.1016/j.ejor.2016.12.022Shen, Y., Gu, C., & Zhao, P. (2019). Structural Vulnerability Assessment of Multi-energy System Using a PageRank Algorithm. Energy Procedia, 158, 6466-6471. doi:10.1016/j.egypro.2019.01.132Shen, Z.-L., Huang, T.-Z., Carpentieri, B., Wen, C., Gu, X.-M., & Tan, X.-Y. (2019). Off-diagonal low-rank preconditioner for difficult PageRank problems. Journal of Computational and Applied Mathematics, 346, 456-470. doi:10.1016/j.cam.2018.07.015Shepelyansky, D. L., & Zhirov, O. V. (2010). Towards Google matrix of brain. Physics Letters A, 374(31-32), 3206-3209. doi:10.1016/j.physleta.2010.06.007SolĂĄ, L., Romance, M., Criado, R., Flores, J., GarcĂ­a del Amo, A., & Boccaletti, S. (2013). Eigenvector centrality of nodes in multiplex networks. Chaos: An Interdisciplinary Journal of Nonlinear Science, 23(3), 033131. doi:10.1063/1.4818544Tian, Z., Liu, Y., Zhang, Y., Liu, Z., & Tian, M. (2019). The general inner-outer iteration method based on regular splittings for the PageRank problem. Applied Mathematics and Computation, 356, 479-501. doi:10.1016/j.amc.2019.02.066Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of ‘small-world’ networks. Nature, 393(6684), 440-442. doi:10.1038/30918Yun, T.-S., Jeong, D., & Park, S. (2019). «Too central to fail» systemic risk measure using PageRank algorithm. Journal of Economic Behavior & Organization, 162, 251-272. doi:10.1016/j.jebo.2018.12.02

    Eigenvector-Based Centrality Measures for Temporal Networks

    Get PDF
    Numerous centrality measures have been developed to quantify the importances of nodes in time-independent networks, and many of them can be expressed as the leading eigenvector of some matrix. With the increasing availability of network data that changes in time, it is important to extend such eigenvector-based centrality measures to time-dependent networks. In this paper, we introduce a principled generalization of network centrality measures that is valid for any eigenvector-based centrality. We consider a temporal network with N nodes as a sequence of T layers that describe the network during different time windows, and we couple centrality matrices for the layers into a supra-centrality matrix of size NTxNT whose dominant eigenvector gives the centrality of each node i at each time t. We refer to this eigenvector and its components as a joint centrality, as it reflects the importances of both the node i and the time layer t. We also introduce the concepts of marginal and conditional centralities, which facilitate the study of centrality trajectories over time. We find that the strength of coupling between layers is important for determining multiscale properties of centrality, such as localization phenomena and the time scale of centrality changes. In the strong-coupling regime, we derive expressions for time-averaged centralities, which are given by the zeroth-order terms of a singular perturbation expansion. We also study first-order terms to obtain first-order-mover scores, which concisely describe the magnitude of nodes' centrality changes over time. As examples, we apply our method to three empirical temporal networks: the United States Ph.D. exchange in mathematics, costarring relationships among top-billed actors during the Golden Age of Hollywood, and citations of decisions from the United States Supreme Court.Comment: 38 pages, 7 figures, and 5 table

    Scalable Algorithms for the Analysis of Massive Networks

    Get PDF
    Die Netzwerkanalyse zielt darauf ab, nicht-triviale Erkenntnisse aus vernetzten Daten zu gewinnen. Beispiele fĂŒr diese Erkenntnisse sind die Wichtigkeit einer EntitĂ€t im VerhĂ€ltnis zu anderen nach bestimmten Kriterien oder das Finden des am besten geeigneten Partners fĂŒr jeden Teilnehmer eines Netzwerks - bekannt als Maximum Weighted Matching (MWM). Da der Begriff der Wichtigkeit an die zu betrachtende Anwendung gebunden ist, wurden zahlreiche ZentralitĂ€tsmaße eingefĂŒhrt. Diese Maße stammen hierbei aus Jahrzehnten, in denen die Rechenleistung sehr begrenzt war und die Netzwerke im Vergleich zu heute viel kleiner waren. Heute sind massive Netzwerke mit Millionen von Kanten allgegenwĂ€rtig und eine triviale Berechnung von ZentralitĂ€tsmaßen ist oft zu zeitaufwĂ€ndig. DarĂŒber hinaus ist die Suche nach der Gruppe von k Knoten mit hoher ZentralitĂ€t eine noch kostspieligere Aufgabe. Skalierbare Algorithmen zur Identifizierung hochzentraler (Gruppen von) Knoten in großen Graphen sind von großer Bedeutung fĂŒr eine umfassende Netzwerkanalyse. Heutigen Netzwerke verĂ€ndern sich zusĂ€tzlich im zeitlichen Verlauf und die effiziente Aktualisierung der Ergebnisse nach einer Änderung ist eine Herausforderung. Effiziente dynamische Algorithmen sind daher ein weiterer wesentlicher Bestandteil moderner Analyse-Pipelines. Hauptziel dieser Arbeit ist es, skalierbare algorithmische Lösungen fĂŒr die zwei oben genannten Probleme zu finden. Die meisten unserer Algorithmen benötigen Sekunden bis einige Minuten, um diese Aufgaben in realen Netzwerken mit bis zu Hunderten Millionen von Kanten zu lösen, was eine deutliche Verbesserung gegenĂŒber dem Stand der Technik darstellt. Außerdem erweitern wir einen modernen Algorithmus fĂŒr MWM auf dynamische Graphen. Experimente zeigen, dass unser dynamischer MWM-Algorithmus Aktualisierungen in Graphen mit Milliarden von Kanten in Millisekunden bewĂ€ltigt.Network analysis aims to unveil non-trivial insights from networked data by studying relationship patterns between the entities of a network. Among these insights, a popular one is to quantify the importance of an entity with respect to the others according to some criteria. Another one is to find the most suitable matching partner for each participant of a network knowing the pairwise preferences of the participants to be matched with each other - known as Maximum Weighted Matching (MWM). Since the notion of importance is tied to the application under consideration, numerous centrality measures have been introduced. Many of these measures, however, were conceived in a time when computing power was very limited and networks were much smaller compared to today's, and thus scalability to large datasets was not considered. Today, massive networks with millions of edges are ubiquitous, and a complete exact computation for traditional centrality measures are often too time-consuming. This issue is amplified if our objective is to find the group of k vertices that is the most central as a group. Scalable algorithms to identify highly central (groups of) vertices on massive graphs are thus of pivotal importance for large-scale network analysis. In addition to their size, today's networks often evolve over time, which poses the challenge of efficiently updating results after a change occurs. Hence, efficient dynamic algorithms are essential for modern network analysis pipelines. In this work, we propose scalable algorithms for identifying important vertices in a network, and for efficiently updating them in evolving networks. In real-world graphs with hundreds of millions of edges, most of our algorithms require seconds to a few minutes to perform these tasks. Further, we extend a state-of-the-art algorithm for MWM to dynamic graphs. Experiments show that our dynamic MWM algorithm handles updates in graphs with billion edges in milliseconds
    • 

    corecore