1,171 research outputs found

    Computational Geometry Column 42

    Get PDF
    A compendium of thirty previously published open problems in computational geometry is presented.Comment: 7 pages; 72 reference

    Minimum-weight triangulation is NP-hard

    Full text link
    A triangulation of a planar point set S is a maximal plane straight-line graph with vertex set S. In the minimum-weight triangulation (MWT) problem, we are looking for a triangulation of a given point set that minimizes the sum of the edge lengths. We prove that the decision version of this problem is NP-hard. We use a reduction from PLANAR-1-IN-3-SAT. The correct working of the gadgets is established with computer assistance, using dynamic programming on polygonal faces, as well as the beta-skeleton heuristic to certify that certain edges belong to the minimum-weight triangulation.Comment: 45 pages (including a technical appendix of 13 pages), 28 figures. This revision contains a few improvements in the expositio

    Aspects of Unstructured Grids and Finite-Volume Solvers for the Euler and Navier-Stokes Equations

    Get PDF
    One of the major achievements in engineering science has been the development of computer algorithms for solving nonlinear differential equations such as the Navier-Stokes equations. In the past, limited computer resources have motivated the development of efficient numerical schemes in computational fluid dynamics (CFD) utilizing structured meshes. The use of structured meshes greatly simplifies the implementation of CFD algorithms on conventional computers. Unstructured grids on the other hand offer an alternative to modeling complex geometries. Unstructured meshes have irregular connectivity and usually contain combinations of triangles, quadrilaterals, tetrahedra, and hexahedra. The generation and use of unstructured grids poses new challenges in CFD. The purpose of this note is to present recent developments in the unstructured grid generation and flow solution technology

    Minimizing the stabbing number of matchings, trees, and triangulations

    Full text link
    The (axis-parallel) stabbing number of a given set of line segments is the maximum number of segments that can be intersected by any one (axis-parallel) line. This paper deals with finding perfect matchings, spanning trees, or triangulations of minimum stabbing number for a given set of points. The complexity of these problems has been a long-standing open question; in fact, it is one of the original 30 outstanding open problems in computational geometry on the list by Demaine, Mitchell, and O'Rourke. The answer we provide is negative for a number of minimum stabbing problems by showing them NP-hard by means of a general proof technique. It implies non-trivial lower bounds on the approximability. On the positive side we propose a cut-based integer programming formulation for minimizing the stabbing number of matchings and spanning trees. We obtain lower bounds (in polynomial time) from the corresponding linear programming relaxations, and show that an optimal fractional solution always contains an edge of at least constant weight. This result constitutes a crucial step towards a constant-factor approximation via an iterated rounding scheme. In computational experiments we demonstrate that our approach allows for actually solving problems with up to several hundred points optimally or near-optimally.Comment: 25 pages, 12 figures, Latex. To appear in "Discrete and Computational Geometry". Previous version (extended abstract) appears in SODA 2004, pp. 430-43

    Optimal Point Placement for Mesh Smoothing

    Full text link
    We study the problem of moving a vertex in an unstructured mesh of triangular, quadrilateral, or tetrahedral elements to optimize the shapes of adjacent elements. We show that many such problems can be solved in linear time using generalized linear programming. We also give efficient algorithms for some mesh smoothing problems that do not fit into the generalized linear programming paradigm.Comment: 12 pages, 3 figures. A preliminary version of this paper was presented at the 8th ACM/SIAM Symp. on Discrete Algorithms (SODA '97). This is the final version, and will appear in a special issue of J. Algorithms for papers from SODA '9

    Approximating Loops in a Shortest Homology Basis from Point Data

    Full text link
    Inference of topological and geometric attributes of a hidden manifold from its point data is a fundamental problem arising in many scientific studies and engineering applications. In this paper we present an algorithm to compute a set of loops from a point data that presumably sample a smooth manifold M⊂RdM\subset \mathbb{R}^d. These loops approximate a {\em shortest} basis of the one dimensional homology group H1(M)H_1(M) over coefficients in finite field Z2\mathbb{Z}_2. Previous results addressed the issue of computing the rank of the homology groups from point data, but there is no result on approximating the shortest basis of a manifold from its point sample. In arriving our result, we also present a polynomial time algorithm for computing a shortest basis of H1(K)H_1(K) for any finite {\em simplicial complex} KK whose edges have non-negative weights

    Morphing of Triangular Meshes in Shape Space

    Get PDF
    We present a novel approach to morph between two isometric poses of the same non-rigid object given as triangular meshes. We model the morphs as linear interpolations in a suitable shape space S\mathcal{S}. For triangulated 3D polygons, we prove that interpolating linearly in this shape space corresponds to the most isometric morph in R3\mathbb{R}^3. We then extend this shape space to arbitrary triangulations in 3D using a heuristic approach and show the practical use of the approach using experiments. Furthermore, we discuss a modified shape space that is useful for isometric skeleton morphing. All of the newly presented approaches solve the morphing problem without the need to solve a minimization problem.Comment: Improved experimental result
    • …
    corecore