8,722 research outputs found

    Approximating subset kk-connectivity problems

    Get PDF
    A subset TβŠ†VT \subseteq V of terminals is kk-connected to a root ss in a directed/undirected graph JJ if JJ has kk internally-disjoint vsvs-paths for every v∈Tv \in T; TT is kk-connected in JJ if TT is kk-connected to every s∈Ts \in T. We consider the {\sf Subset kk-Connectivity Augmentation} problem: given a graph G=(V,E)G=(V,E) with edge/node-costs, node subset TβŠ†VT \subseteq V, and a subgraph J=(V,EJ)J=(V,E_J) of GG such that TT is kk-connected in JJ, find a minimum-cost augmenting edge-set FβŠ†Eβˆ–EJF \subseteq E \setminus E_J such that TT is (k+1)(k+1)-connected in JβˆͺFJ \cup F. The problem admits trivial ratio O(∣T∣2)O(|T|^2). We consider the case ∣T∣>k|T|>k and prove that for directed/undirected graphs and edge/node-costs, a ρ\rho-approximation for {\sf Rooted Subset kk-Connectivity Augmentation} implies the following ratios for {\sf Subset kk-Connectivity Augmentation}: (i) b(ρ+k)+(3∣T∣∣Tβˆ£βˆ’k)2H(3∣T∣∣Tβˆ£βˆ’k)b(\rho+k) + {(\frac{3|T|}{|T|-k})}^2 H(\frac{3|T|}{|T|-k}); (ii) ρ⋅O(∣T∣∣Tβˆ£βˆ’klog⁑k)\rho \cdot O(\frac{|T|}{|T|-k} \log k), where b=1 for undirected graphs and b=2 for directed graphs, and H(k)H(k) is the kkth harmonic number. The best known values of ρ\rho on undirected graphs are min⁑{∣T∣,O(k)}\min\{|T|,O(k)\} for edge-costs and min⁑{∣T∣,O(klog⁑∣T∣)}\min\{|T|,O(k \log |T|)\} for node-costs; for directed graphs ρ=∣T∣\rho=|T| for both versions. Our results imply that unless k=∣Tβˆ£βˆ’o(∣T∣)k=|T|-o(|T|), {\sf Subset kk-Connectivity Augmentation} admits the same ratios as the best known ones for the rooted version. This improves the ratios in \cite{N-focs,L}

    Parallel Algorithms for Geometric Graph Problems

    Full text link
    We give algorithms for geometric graph problems in the modern parallel models inspired by MapReduce. For example, for the Minimum Spanning Tree (MST) problem over a set of points in the two-dimensional space, our algorithm computes a (1+Ο΅)(1+\epsilon)-approximate MST. Our algorithms work in a constant number of rounds of communication, while using total space and communication proportional to the size of the data (linear space and near linear time algorithms). In contrast, for general graphs, achieving the same result for MST (or even connectivity) remains a challenging open problem, despite drawing significant attention in recent years. We develop a general algorithmic framework that, besides MST, also applies to Earth-Mover Distance (EMD) and the transportation cost problem. Our algorithmic framework has implications beyond the MapReduce model. For example it yields a new algorithm for computing EMD cost in the plane in near-linear time, n1+oΟ΅(1)n^{1+o_\epsilon(1)}. We note that while recently Sharathkumar and Agarwal developed a near-linear time algorithm for (1+Ο΅)(1+\epsilon)-approximating EMD, our algorithm is fundamentally different, and, for example, also solves the transportation (cost) problem, raised as an open question in their work. Furthermore, our algorithm immediately gives a (1+Ο΅)(1+\epsilon)-approximation algorithm with nΞ΄n^{\delta} space in the streaming-with-sorting model with 1/Ξ΄O(1)1/\delta^{O(1)} passes. As such, it is tempting to conjecture that the parallel models may also constitute a concrete playground in the quest for efficient algorithms for EMD (and other similar problems) in the vanilla streaming model, a well-known open problem
    • …
    corecore