7 research outputs found

    On rooted kk-connectivity problems in quasi-bipartite digraphs

    Full text link
    We consider the directed Rooted Subset kk-Edge-Connectivity problem: given a set TVT \subseteq V of terminals in a digraph G=(V+r,E)G=(V+r,E) with edge costs and an integer kk, find a min-cost subgraph of GG that contains kk edge disjoint rtrt-paths for all tTt \in T. The case when every edge of positive cost has head in TT admits a polynomial time algorithm due to Frank, and the case when all positive cost edges are incident to rr is equivalent to the kk-Multicover problem. Recently, [Chan et al. APPROX20] obtained ratio O(lnklnT)O(\ln k \ln |T|) for quasi-bipartite instances, when every edge in GG has an end in T+rT+r. We give a simple proof for the same ratio for a more general problem of covering an arbitrary TT-intersecting supermodular set function by a minimum cost edge set, and for the case when only every positive cost edge has an end in T+rT+r

    Spider covers for prize-collecting network activation problem

    Full text link
    In the network activation problem, each edge in a graph is associated with an activation function, that decides whether the edge is activated from node-weights assigned to its end-nodes. The feasible solutions of the problem are the node-weights such that the activated edges form graphs of required connectivity, and the objective is to find a feasible solution minimizing its total weight. In this paper, we consider a prize-collecting version of the network activation problem, and present first non- trivial approximation algorithms. Our algorithms are based on a new LP relaxation of the problem. They round optimal solutions for the relaxation by repeatedly computing node-weights activating subgraphs called spiders, which are known to be useful for approximating the network activation problem

    Approximating subset kk-connectivity problems

    Get PDF
    A subset TVT \subseteq V of terminals is kk-connected to a root ss in a directed/undirected graph JJ if JJ has kk internally-disjoint vsvs-paths for every vTv \in T; TT is kk-connected in JJ if TT is kk-connected to every sTs \in T. We consider the {\sf Subset kk-Connectivity Augmentation} problem: given a graph G=(V,E)G=(V,E) with edge/node-costs, node subset TVT \subseteq V, and a subgraph J=(V,EJ)J=(V,E_J) of GG such that TT is kk-connected in JJ, find a minimum-cost augmenting edge-set FEEJF \subseteq E \setminus E_J such that TT is (k+1)(k+1)-connected in JFJ \cup F. The problem admits trivial ratio O(T2)O(|T|^2). We consider the case T>k|T|>k and prove that for directed/undirected graphs and edge/node-costs, a ρ\rho-approximation for {\sf Rooted Subset kk-Connectivity Augmentation} implies the following ratios for {\sf Subset kk-Connectivity Augmentation}: (i) b(ρ+k)+(3TTk)2H(3TTk)b(\rho+k) + {(\frac{3|T|}{|T|-k})}^2 H(\frac{3|T|}{|T|-k}); (ii) ρO(TTklogk)\rho \cdot O(\frac{|T|}{|T|-k} \log k), where b=1 for undirected graphs and b=2 for directed graphs, and H(k)H(k) is the kkth harmonic number. The best known values of ρ\rho on undirected graphs are min{T,O(k)}\min\{|T|,O(k)\} for edge-costs and min{T,O(klogT)}\min\{|T|,O(k \log |T|)\} for node-costs; for directed graphs ρ=T\rho=|T| for both versions. Our results imply that unless k=To(T)k=|T|-o(|T|), {\sf Subset kk-Connectivity Augmentation} admits the same ratios as the best known ones for the rooted version. This improves the ratios in \cite{N-focs,L}

    Approximating survivable networks with β-metric costs

    Get PDF
    AbstractThe Survivable Network Design (SND) problem seeks a minimum-cost subgraph that satisfies prescribed node-connectivity requirements. We consider SND on both directed and undirected complete graphs with β-metric costs when c(xz)⩽β[c(xy)+c(yz)] for all x,y,z∈V, which varies from uniform costs (β=1/2) to metric costs (β=1).For the k-Connected Subgraph (k-CS) problem our ratios are: 1+2βk(1−β)−12k−1 for undirected graphs, and 1+4β3k(1−3β2)−12k−1 for directed graphs and 12⩽β<13. For undirected graphs this improves the ratios β1−β of Böckenhauer et al. (2008) [3] and 2+βkn of Kortsarz and Nutov (2003) [11] for all k⩾4 and 12+3k−22(4k2−7k+2)⩽β⩽k2(k+1)2−2. We also show that SND admits the ratios 2β1−β for undirected graphs, and 4β31−3β2 for directed graphs with 1/2⩽β<1/3. For two important particular cases of SND, so-called Subset k-CS and Rooted SND, our ratios are 2β31−3β2 for directed graphs and β1−β for subset k-CS on undirected graphs

    Approximation Algorithms for (S,T)-Connectivity Problems

    Get PDF
    We study a directed network design problem called the kk-(S,T)(S,T)-connectivity problem; we design and analyze approximation algorithms and give hardness results. For each positive integer kk, the minimum cost kk-vertex connected spanning subgraph problem is a special case of the kk-(S,T)(S,T)-connectivity problem. We defer precise statements of the problem and of our results to the introduction. For k=1k=1, we call the problem the (S,T)(S,T)-connectivity problem. We study three variants of the problem: the standard (S,T)(S,T)-connectivity problem, the relaxed (S,T)(S,T)-connectivity problem, and the unrestricted (S,T)(S,T)-connectivity problem. We give hardness results for these three variants. We design a 22-approximation algorithm for the standard (S,T)(S,T)-connectivity problem. We design tight approximation algorithms for the relaxed (S,T)(S,T)-connectivity problem and one of its special cases. For any kk, we give an O(logklogn)O(\log k\log n)-approximation algorithm, where nn denotes the number of vertices. The approximation guarantee almost matches the best approximation guarantee known for the minimum cost kk-vertex connected spanning subgraph problem which is O(logklognnk)O(\log k\log\frac{n}{n-k}) due to Nutov in 2009

    Proceedings of the 10th Japanese-Hungarian Symposium on Discrete Mathematics and Its Applications

    Get PDF
    corecore