1,928 research outputs found

    On Approximating Restricted Cycle Covers

    Get PDF
    A cycle cover of a graph is a set of cycles such that every vertex is part of exactly one cycle. An L-cycle cover is a cycle cover in which the length of every cycle is in the set L. The weight of a cycle cover of an edge-weighted graph is the sum of the weights of its edges. We come close to settling the complexity and approximability of computing L-cycle covers. On the one hand, we show that for almost all L, computing L-cycle covers of maximum weight in directed and undirected graphs is APX-hard and NP-hard. Most of our hardness results hold even if the edge weights are restricted to zero and one. On the other hand, we show that the problem of computing L-cycle covers of maximum weight can be approximated within a factor of 2 for undirected graphs and within a factor of 8/3 in the case of directed graphs. This holds for arbitrary sets L.Comment: To appear in SIAM Journal on Computing. Minor change

    Dynamic Graph Stream Algorithms in o(n)o(n) Space

    Get PDF
    In this paper we study graph problems in dynamic streaming model, where the input is defined by a sequence of edge insertions and deletions. As many natural problems require Ω(n)\Omega(n) space, where nn is the number of vertices, existing works mainly focused on designing O~(n)\tilde{O}(n) space algorithms. Although sublinear in the number of edges for dense graphs, it could still be too large for many applications (e.g. nn is huge or the graph is sparse). In this work, we give single-pass algorithms beating this space barrier for two classes of problems. We present o(n)o(n) space algorithms for estimating the number of connected components with additive error εn\varepsilon n and (1+ε)(1+\varepsilon)-approximating the weight of minimum spanning tree, for any small constant ε>0\varepsilon>0. The latter improves previous O~(n)\tilde{O}(n) space algorithm given by Ahn et al. (SODA 2012) for connected graphs with bounded edge weights. We initiate the study of approximate graph property testing in the dynamic streaming model, where we want to distinguish graphs satisfying the property from graphs that are ε\varepsilon-far from having the property. We consider the problem of testing kk-edge connectivity, kk-vertex connectivity, cycle-freeness and bipartiteness (of planar graphs), for which, we provide algorithms using roughly O~(n1−ε)\tilde{O}(n^{1-\varepsilon}) space, which is o(n)o(n) for any constant ε\varepsilon. To complement our algorithms, we present Ω(n1−O(ε))\Omega(n^{1-O(\varepsilon)}) space lower bounds for these problems, which show that such a dependence on ε\varepsilon is necessary.Comment: ICALP 201

    Linear Time Subgraph Counting, Graph Degeneracy, and the Chasm at Size Six

    Get PDF
    We consider the problem of counting all k-vertex subgraphs in an input graph, for any constant k. This problem (denoted SUB-CNT_k) has been studied extensively in both theory and practice. In a classic result, Chiba and Nishizeki (SICOMP 85) gave linear time algorithms for clique and 4-cycle counting for bounded degeneracy graphs. This is a rich class of sparse graphs that contains, for example, all minor-free families and preferential attachment graphs. The techniques from this result have inspired a number of recent practical algorithms for SUB-CNT_k. Towards a better understanding of the limits of these techniques, we ask: for what values of k can SUB_CNT_k be solved in linear time? We discover a chasm at k=6. Specifically, we prove that for k < 6, SUB_CNT_k can be solved in linear time. Assuming a standard conjecture in fine-grained complexity, we prove that for all k ? 6, SUB-CNT_k cannot be solved even in near-linear time
    • …
    corecore