393 research outputs found

    A framework for adaptive Monte-Carlo procedures

    Get PDF
    Adaptive Monte Carlo methods are recent variance reduction techniques. In this work, we propose a mathematical setting which greatly relaxes the assumptions needed by for the adaptive importance sampling techniques presented by Vazquez-Abad and Dufresne, Fu and Su, and Arouna. We establish the convergence and asymptotic normality of the adaptive Monte Carlo estimator under local assumptions which are easily verifiable in practice. We present one way of approximating the optimal importance sampling parameter using a randomly truncated stochastic algorithm. Finally, we apply this technique to some examples of valuation of financial derivatives

    Pricing High-Dimensional American Options Using Local Consistency Conditions

    Get PDF
    We investigate a new method for pricing high-dimensional American options. The method is of finite difference type but is also related to Monte Carlo techniques in that it involves a representative sampling of the underlying variables.An approximating Markov chain is built using this sampling and linear programming is used to satisfy local consistency conditions at each point related to the infinitesimal generator or transition density.The algorithm for constructing the matrix can be parallelised easily; moreover once it has been obtained it can be reused to generate quick solutions for a large class of related problems.We provide pricing results for geometric average options in up to ten dimensions, and compare these with accurate benchmarks.option pricing;inequality;markov chains

    An Irregular Grid Approach for Pricing High-Dimensional American Options

    Get PDF
    We propose and test a new method for pricing American options in a high-dimensional setting.The method is centred around the approximation of the associated complementarity problem on an irregular grid.We approximate the partial differential operator on this grid by appealing to the SDE representation of the underlying process and computing the root of the transition probability matrix of an approximating Markov chain.Experimental results in five dimensions are presented for four different payoff functions.option pricing;inequality;markov chains

    Monte Carlo simulation algorithms for the pricing of American options

    Get PDF
    One looks at the pricing of American options using Monte Carlo simulations. The selected theories on the low-biased and high-biased algorithms are reviewed. Numerical results from the implementations of the chosen algorithms are presented and analysed. One also investigates the effects of applying antithetic variables to the high-biased algorithm, showing that the variance reducing technique provides great improvements to the existing algorithm

    Large deviation asymptotics and control variates for simulating large functions

    Full text link
    Consider the normalized partial sums of a real-valued function FF of a Markov chain, ϕn:=n1k=0n1F(Φ(k)),n1.\phi_n:=n^{-1}\sum_{k=0}^{n-1}F(\Phi(k)),\qquad n\ge1. The chain {Φ(k):k0}\{\Phi(k):k\ge0\} takes values in a general state space X\mathsf {X}, with transition kernel PP, and it is assumed that the Lyapunov drift condition holds: PVVW+bICPV\le V-W+b\mathbb{I}_C where V:X(0,)V:\mathsf {X}\to(0,\infty), W:X[1,)W:\mathsf {X}\to[1,\infty), the set CC is small and WW dominates FF. Under these assumptions, the following conclusions are obtained: 1. It is known that this drift condition is equivalent to the existence of a unique invariant distribution π\pi satisfying π(W)<\pi(W)<\infty, and the law of large numbers holds for any function FF dominated by WW: ϕnϕ:=π(F),a.s.,n.\phi_n\to\phi:=\pi(F),\qquad{a.s.}, n\to\infty. 2. The lower error probability defined by P{ϕnc}\mathsf {P}\{\phi_n\le c\}, for c<ϕc<\phi, n1n\ge1, satisfies a large deviation limit theorem when the function FF satisfies a monotonicity condition. Under additional minor conditions an exact large deviations expansion is obtained. 3. If WW is near-monotone, then control-variates are constructed based on the Lyapunov function VV, providing a pair of estimators that together satisfy nontrivial large asymptotics for the lower and upper error probabilities. In an application to simulation of queues it is shown that exact large deviation asymptotics are possible even when the estimator does not satisfy a central limit theorem.Comment: Published at http://dx.doi.org/10.1214/105051605000000737 in the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Pricing path-dependent Bermudan options using Wiener chaos expansion: an embarrassingly parallel approach

    Full text link
    In this work, we propose a new policy iteration algorithm for pricing Bermudan options when the payoff process cannot be written as a function of a lifted Markov process. Our approach is based on a modification of the well-known Longstaff Schwartz algorithm, in which we basically replace the standard least square regression by a Wiener chaos expansion. Not only does it allow us to deal with a non Markovian setting, but it also breaks the bottleneck induced by the least square regression as the coefficients of the chaos expansion are given by scalar products on the L^2 space and can therefore be approximated by independent Monte Carlo computations. This key feature enables us to provide an embarrassingly parallel algorithm.Comment: The Journal of Computational Finance, Incisive Media, In pres
    corecore