427 research outputs found

    Conversations on Empathy

    Get PDF
    In the aftermath of a global pandemic, amidst new and ongoing wars, genocide, inequality, and staggering ecological collapse, some in the public and political arena have argued that we are in desperate need of greater empathy — be this with our neighbours, refugees, war victims, the vulnerable or disappearing animal and plant species. This interdisciplinary volume asks the crucial questions: How does a better understanding of empathy contribute, if at all, to our understanding of others? How is it implicated in the ways we perceive, understand and constitute others as subjects? Conversations on Empathy examines how empathy might be enacted and experienced either as a way to highlight forms of otherness or, instead, to overcome what might otherwise appear to be irreducible differences. It explores the ways in which empathy enables us to understand, imagine and create sameness and otherness in our everyday intersubjective encounters focusing on a varied range of "radical others" – others who are perceived as being dramatically different from oneself. With a focus on the importance of empathy to understand difference, the book contends that the role of empathy is critical, now more than ever, for thinking about local and global challenges of interconnectedness, care and justice

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    On the Utility of Representation Learning Algorithms for Myoelectric Interfacing

    Get PDF
    Electrical activity produced by muscles during voluntary movement is a reflection of the firing patterns of relevant motor neurons and, by extension, the latent motor intent driving the movement. Once transduced via electromyography (EMG) and converted into digital form, this activity can be processed to provide an estimate of the original motor intent and is as such a feasible basis for non-invasive efferent neural interfacing. EMG-based motor intent decoding has so far received the most attention in the field of upper-limb prosthetics, where alternative means of interfacing are scarce and the utility of better control apparent. Whereas myoelectric prostheses have been available since the 1960s, available EMG control interfaces still lag behind the mechanical capabilities of the artificial limbs they are intended to steer—a gap at least partially due to limitations in current methods for translating EMG into appropriate motion commands. As the relationship between EMG signals and concurrent effector kinematics is highly non-linear and apparently stochastic, finding ways to accurately extract and combine relevant information from across electrode sites is still an active area of inquiry.This dissertation comprises an introduction and eight papers that explore issues afflicting the status quo of myoelectric decoding and possible solutions, all related through their use of learning algorithms and deep Artificial Neural Network (ANN) models. Paper I presents a Convolutional Neural Network (CNN) for multi-label movement decoding of high-density surface EMG (HD-sEMG) signals. Inspired by the successful use of CNNs in Paper I and the work of others, Paper II presents a method for automatic design of CNN architectures for use in myocontrol. Paper III introduces an ANN architecture with an appertaining training framework from which simultaneous and proportional control emerges. Paper Iv introduce a dataset of HD-sEMG signals for use with learning algorithms. Paper v applies a Recurrent Neural Network (RNN) model to decode finger forces from intramuscular EMG. Paper vI introduces a Transformer model for myoelectric interfacing that do not need additional training data to function with previously unseen users. Paper vII compares the performance of a Long Short-Term Memory (LSTM) network to that of classical pattern recognition algorithms. Lastly, paper vIII describes a framework for synthesizing EMG from multi-articulate gestures intended to reduce training burden

    (b2023 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2006-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy (this manuscript would require a REVOLUTION in international academy environment!)

    Get PDF
    (b2023 to 2014) The UNBELIEVABLE similarities between the ideas of some people (2006-2016) and my ideas (2002-2008) in physics (quantum mechanics, cosmology), cognitive neuroscience, philosophy of mind, and philosophy (this manuscript would require a REVOLUTION in international academy environment!

    Chromosome rearrangements and population genomics

    Get PDF
    Chromosome rearrangements result in changes to the physical linkage and order of sequences in the genome. Although we have known about these mutations for more than a century, we still lack a detailed understanding of how they become fixed and what their effect is on other evolutionary processes. Analysing genome sequences provides a way to address this knowledge gap. In this thesis I compare genome assemblies and use population genomic inference to gain a better understanding of the role that chromosome rearrangements play in evolution. I focus on butterflies in the genus Brenthis, where chromosome numbers are known to vary between species. In chapter 2, I present a genome assembly of Brenthis ino and show that its genome has been shaped by many chromosome rearrangements, including a Z-autosome fusion that is still segregating. In chapter 3, I investigate how synteny information in genome sequences can be used to infer ancestral linkage groups and inter-chromosomal rearrangements, implementing the methods in a command-line tool. In chapter 4, I test whether chromosome fissions and fusions have acted as barriers to gene flow between B. ino and its sister species B. daphne. I find that chromosomes involved in rearrangements have experienced less post-divergence gene flow than the rest of the genome, suggesting that rearrangements have promoted speciation. Finally, in chapter 5, I investigate how chromosome rearrangements have become fixed in B. ino, B. daphne, and a third species, B. hecate. I show that genetic drift is unlikely to be a strong enough force to have fixed very underdominant rearrangements, and that there is only weak evidence that chromosome fusions have become fixed through positive natural selection. In summary, this work provides methods for researching chromosome evolution as well as new results about how rearrangements evolve and impact the speciation process

    Solving the stochastic dynamics of population growth

    Get PDF
    Population growth is a fundamental process in ecology and evolution. The population size dynamics during growth are often described by deterministic equations derived from kinetic models. Here, we simulate several population growth models and compare the size averaged over many stochastic realizations with the deterministic predictions. We show that these deterministic equations are generically bad predictors of the average stochastic population dynamics. Specifically, deterministic predictions overestimate the simulated population sizes, especially those of populations starting with a small number of individuals. Describing population growth as a stochastic birth process, we prove that the discrepancy between deterministic predictions and simulated data is due to unclosed-moment dynamics. In other words, the deterministic approach does not consider the variability of birth times, which is particularly important with small population sizes. We show that some moment-closure approximations describe the growth dynamics better than the deterministic prediction. However, they do not reduce the error satisfactorily and only apply to some population growth models. We explicitly solve the stochastic growth dynamics, and our solution applies to any population growth model. We show that our solution exactly quantifies the dynamics of a community composed of different strains and correctly predicts the fixation probability of a strain in a serial dilution experiment. Our work sets the foundations for a more faithful modeling of community and population dynamics. It will allow the development of new tools for a more accurate analysis of experimental and empirical results, including the inference of important growth parameters

    Decisions, decisions, decisions: the development and plasticity of reinforcement learning, social and temporal decision making in children

    Get PDF
    Human decision-making is the flexible way people respond to their environment, take actions, and plan toward long-term goals. It is commonly thought that humans rely on distinct decision-making systems, which are either more habitual and reflexive or deliberate and calculated. How we make decisions can provide insight into our social functioning, mental health and underlying psychopathology, and ability to consider the consequences of our actions. Notably, the ability to make appropriate, habitual or deliberate decisions depending on the context, here referred to as metacontrol, remains underexplored in developmental samples. This thesis aims to investigate the development of different decision-making mechanisms in middle childhood (ages 5-13) and to illuminate the potential neurocognitive mechanisms underlying value-based decision-making. Using a novel sequential decision-making task, the first experimental chapter presents robust markers of model-based decision-making in childhood (N = 85), which reflects the ability to plan through a sequential task structure, contrary to previous developmental studies. Using the same paradigm, in a new sample via both behavioral (N = 69) and MRI-based measures (N = 44), the second experimental chapter explores the neurocognitive mechanisms that may underlie model-based decision-making and its metacontrol in childhood and links individual differences in inhibition and cortical thickness to metacontrol. The third experimental chapter explores the potential plasticity of social and intertemporal decision-making in a longitudinal executive function training paradigm (N = 205) and initial relationships with executive functions. Finally, I critically discuss the results presented in this thesis and their implications and outline directions for future research in the neurocognitive underpinnings of decision-making during development

    Behavior quantification as the missing link between fields: Tools for digital psychiatry and their role in the future of neurobiology

    Full text link
    The great behavioral heterogeneity observed between individuals with the same psychiatric disorder and even within one individual over time complicates both clinical practice and biomedical research. However, modern technologies are an exciting opportunity to improve behavioral characterization. Existing psychiatry methods that are qualitative or unscalable, such as patient surveys or clinical interviews, can now be collected at a greater capacity and analyzed to produce new quantitative measures. Furthermore, recent capabilities for continuous collection of passive sensor streams, such as phone GPS or smartwatch accelerometer, open avenues of novel questioning that were previously entirely unrealistic. Their temporally dense nature enables a cohesive study of real-time neural and behavioral signals. To develop comprehensive neurobiological models of psychiatric disease, it will be critical to first develop strong methods for behavioral quantification. There is huge potential in what can theoretically be captured by current technologies, but this in itself presents a large computational challenge -- one that will necessitate new data processing tools, new machine learning techniques, and ultimately a shift in how interdisciplinary work is conducted. In my thesis, I detail research projects that take different perspectives on digital psychiatry, subsequently tying ideas together with a concluding discussion on the future of the field. I also provide software infrastructure where relevant, with extensive documentation. Major contributions include scientific arguments and proof of concept results for daily free-form audio journals as an underappreciated psychiatry research datatype, as well as novel stability theorems and pilot empirical success for a proposed multi-area recurrent neural network architecture.Comment: PhD thesis cop

    A Framework for Investigating Random Ensembles of Structured Ecosystems and Quantifying Their Emergent Coarse-grainability

    Get PDF
    The interface between statistical physics and theoretical ecology has a long history, employing powerful concepts such as ensemble approaches and typicality to study emergent properties of ecosystems. This of course raises the question of what ensembles are useful to describe the typical behaviors of evolution and ecology, but so far, the traditional context of high-diversity ecology has considered ensembles of random, unstructured ecosystems. Although much insight has been gained in this regime, one naturally wonders how representative are random ensembles of real, natural ecosystems that are arguably atypical and highly structured by evolution. Moreover, the question of coarse-graining ecosystems has yet to be addressed because the very ingredient responsible for predictive coarse-grained descriptions – ecosystem structure – is explicitly absent from the current theoretical framework. This dissertation investigates the coarse-grainability of ecosystems within minimal models that intend to capture the atypicality generated by evolution, aiming to establish a conceptual language from which a general theoretical framework can be built. In the first two chapters, I review the applications of statistical physics in classical models of ecology, moving on to then explore the evolutionary consequences of the atypicality that arises from evolution. In Chapter 3, I present a model for investigating random, structured ecosystems, enabling me to begin studying the emergent coarse-grainability of microbial ecosystems. In particular, I develop the hypothesis that a high strain diversity, despite being nominally more complex, may in fact facilitate coarse-grainability, which is maximized when an ecosystem is assembled in its native environment. Building on this framework in Chapter 4, I provide a more principled approach for defining coarse-grainability by systematically mapping the prediction power versus information content of coarse-grained descriptions of ecosystem composition. Applying this framework to experimental data, I confirm the diversity-enhanced coarse-grainability hypothesis and discuss how this effect cannot be reproduced in standard ecological models parameterized using random ensembles. Finally, I link these results to the theoretical concept of functional attractors of diverse ecosystems
    corecore